These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17310719)

  • 1. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: influence of temperature.
    Quinn KA; Byrne RH; Schijf J
    Environ Sci Technol; 2007 Jan; 41(2):541-6. PubMed ID: 17310719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the chemical behavior and spatial distribution of yttrium and rare earth elements (YREEs) in a coastal aquifer adjacent to the Urmia Hypersaline Lake, NW Iran.
    Sohrabi N; Kalantari N; Amiri V; Nakhaei M
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20502-20520. PubMed ID: 28710733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Hydrous Manganese and Ferric Oxides on the Behavior of Aqueous Rare Earth Elements (REE): Evidence from a Modeling Approach and Implication for the Sink of REE.
    Liu H; Pourret O; Guo H; Martinez RE; Zouhri L
    Int J Environ Res Public Health; 2018 Dec; 15(12):. PubMed ID: 30545162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling silica sorption to iron hydroxide.
    Davis CC; Chen HW; Edwards M
    Environ Sci Technol; 2002 Feb; 36(4):582-7. PubMed ID: 11878370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment.
    Zhu Z; Zheng A
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29473856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yttrium and rare earth elements fractionation in salt marsh halophyte plants.
    Brito P; Malvar M; Galinha C; Caçador I; Canário J; Araújo MF; Raimundo J
    Sci Total Environ; 2018 Dec; 643():1117-1126. PubMed ID: 30189529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ferrous iron on arsenate sorption to amorphous ferric hydroxide.
    Mukiibi M; Ela WP; Sáez AE
    Ann N Y Acad Sci; 2008 Oct; 1140():335-45. PubMed ID: 18991933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective liquid chromatographic separation of yttrium from heavier rare earth elements using acetic acid as a novel eluent.
    Kifle D; Wibetoe G
    J Chromatogr A; 2013 Sep; 1307():86-90. PubMed ID: 23932372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface.
    Martinez RE; Pourret O; Takahashi Y
    J Colloid Interface Sci; 2014 Jan; 413():106-11. PubMed ID: 24183437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of aqueous neodymium, europium, gadolinium, terbium, and yttrium ions onto nZVI-montmorillonite: kinetics, thermodynamic mechanism, and the influence of coexisting ions.
    Wang J
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33521-33537. PubMed ID: 30267348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the sorption kinetics of divalent metal ions to hematite.
    Jeon BH; Dempsey BA; Burgos WD; Royer RA; Roden EE
    Water Res; 2004 May; 38(10):2499-504. PubMed ID: 15159153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling.
    Heidmann I; Christl I; Leu C; Kretzschmar R
    J Colloid Interface Sci; 2005 Feb; 282(2):270-82. PubMed ID: 15589531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(II) sorption on hematite: new insights based on spectroscopic measurements.
    Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2007 Jan; 41(2):471-7. PubMed ID: 17310709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The removal of some rare earth elements from their aqueous solutions on by-pass cement dust (BCD).
    Ali OI; Osman HH; Sayed SA; Shalabi ME
    J Hazard Mater; 2011 Nov; 195():62-7. PubMed ID: 21924551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.
    Brechbühl Y; Christl I; Elzinga EJ; Kretzschmar R
    J Colloid Interface Sci; 2012 Jul; 377(1):313-21. PubMed ID: 22494686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.
    Dybczyński RS; Kulisa K; Pyszynska M; Bojanowska-Czajka A
    J Chromatogr A; 2015 Mar; 1386():74-80. PubMed ID: 25700726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature effect on phosphate sorption by iron hydroxide.
    Mustafa S; Nawab G; Naeem A; Rehana N; Dilara B
    Environ Technol; 2004 Jan; 25(1):1-6. PubMed ID: 15027644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH).
    Banerjee K; Amy GL; Prevost M; Nour S; Jekel M; Gallagher PM; Blumenschein CD
    Water Res; 2008 Jul; 42(13):3371-8. PubMed ID: 18538818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.
    Dixit S; Hering JG
    Environ Sci Technol; 2003 Sep; 37(18):4182-9. PubMed ID: 14524451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.