These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 1731088)
1. Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. Wolfe KH; Morden CW; Palmer JD J Mol Biol; 1992 Jan; 223(1):95-104. PubMed ID: 1731088 [TBL] [Abstract][Full Text] [Related]
2. Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes. Morden CW; Wolfe KH; dePamphilis CW; Palmer JD EMBO J; 1991 Nov; 10(11):3281-8. PubMed ID: 1915295 [TBL] [Abstract][Full Text] [Related]
3. Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. Wolfe KH; Morden CW; Ems SC; Palmer JD J Mol Evol; 1992 Oct; 35(4):304-17. PubMed ID: 1404416 [TBL] [Abstract][Full Text] [Related]
4. Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes. Wolfe KH; Katz-Downie DS; Morden CW; Palmer JD Plant Mol Biol; 1992 Apr; 18(6):1037-48. PubMed ID: 1600142 [TBL] [Abstract][Full Text] [Related]
5. Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Ems SC; Morden CW; Dixon CK; Wolfe KH; dePamphilis CW; Palmer JD Plant Mol Biol; 1995 Nov; 29(4):721-33. PubMed ID: 8541499 [TBL] [Abstract][Full Text] [Related]
6. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification. Ohyama K; Fukuzawa H; Kohchi T; Sano T; Sano S; Shirai H; Umesono K; Shiki Y; Takeuchi M; Chang Z J Mol Biol; 1988 Sep; 203(2):281-98. PubMed ID: 2462054 [TBL] [Abstract][Full Text] [Related]
7. A large deletion in the plastid DNA of the holoparasitic flowering plant Cuscuta reflexa concerning two ribosomal proteins (rpl2, rpl23), one transfer RNA (trnI) and an ORF 2280 homologue. Bömmer D; Haberhausen G; Zetsche K Curr Genet; 1993; 24(1-2):171-6. PubMed ID: 8358824 [TBL] [Abstract][Full Text] [Related]
8. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. dePamphilis CW; Palmer JD Nature; 1990 Nov; 348(6299):337-9. PubMed ID: 2250706 [TBL] [Abstract][Full Text] [Related]
9. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Wolfe KH; Morden CW; Palmer JD Proc Natl Acad Sci U S A; 1992 Nov; 89(22):10648-52. PubMed ID: 1332054 [TBL] [Abstract][Full Text] [Related]
10. Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. Funk HT; Berg S; Krupinska K; Maier UG; Krause K BMC Plant Biol; 2007 Aug; 7():45. PubMed ID: 17714582 [TBL] [Abstract][Full Text] [Related]
11. A subset of conserved tRNA genes in plastid DNA of nongreen plants. Lohan AJ; Wolfe KH Genetics; 1998 Sep; 150(1):425-33. PubMed ID: 9725858 [TBL] [Abstract][Full Text] [Related]
12. Lack of a functional plastid tRNA(Cys) gene is associated with loss of photosynthesis in a lineage of parasitic plants. Taylor GW; Wolfe KH; Morden CW; dePamphilis CW; Palmer JD Curr Genet; 1991 Dec; 20(6):515-8. PubMed ID: 1723664 [TBL] [Abstract][Full Text] [Related]
13. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Hiratsuka J; Shimada H; Whittier R; Ishibashi T; Sakamoto M; Mori M; Kondo C; Honji Y; Sun CR; Meng BY Mol Gen Genet; 1989 Jun; 217(2-3):185-94. PubMed ID: 2770692 [TBL] [Abstract][Full Text] [Related]
14. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Do HD; Kim JS; Kim JH Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725 [TBL] [Abstract][Full Text] [Related]
15. Structure and evolution of the largest chloroplast gene (ORF2280): internal plasticity and multiple gene loss during angiosperm evolution. Downie SR; Katz-Downie DS; Wolfe KH; Calie PJ; Palmer JD Curr Genet; 1994 Apr; 25(4):367-78. PubMed ID: 8082181 [TBL] [Abstract][Full Text] [Related]
16. Structure and organization of Marchantia polymorpha chloroplast genome. IV. Inverted repeat and small single copy regions. Kohchi T; Shirai H; Fukuzawa H; Sano T; Komano T; Umesono K; Inokuchi H; Ozeki H; Ohyama K J Mol Biol; 1988 Sep; 203(2):353-72. PubMed ID: 3199437 [TBL] [Abstract][Full Text] [Related]
17. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. Maier RM; Neckermann K; Igloi GL; Kössel H J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415 [TBL] [Abstract][Full Text] [Related]
18. The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm. Peredo EL; King UM; Les DH PLoS One; 2013; 8(7):e68591. PubMed ID: 23861923 [TBL] [Abstract][Full Text] [Related]
19. Structure and organization of Marchantia polymorpha chloroplast genome. II. Gene organization of the large single copy region from rps'12 to atpB. Umesono K; Inokuchi H; Shiki Y; Takeuchi M; Chang Z; Fukuzawa H; Kohchi T; Shirai H; Ohyama K; Ozeki H J Mol Biol; 1988 Sep; 203(2):299-331. PubMed ID: 2974085 [TBL] [Abstract][Full Text] [Related]
20. Organization and sequence of five tRNA genes and of an unidentified reading frame in the wheat chloroplast genome: evidence for gene rearrangements during the evolution of chloroplast genomes. Quigley F; Weil JH Curr Genet; 1985; 9(6):495-503. PubMed ID: 3870931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]