BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17310991)

  • 1. Uncovering residues that regulate cyclin D1 proteasomal degradation.
    Feng Q; Sekula D; Müller R; Freemantle SJ; Dmitrovsky E
    Oncogene; 2007 Aug; 26(35):5098-106. PubMed ID: 17310991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoid targeting of different D-type cyclins through distinct chemopreventive mechanisms.
    Ma Y; Feng Q; Sekula D; Diehl JA; Freemantle SJ; Dmitrovsky E
    Cancer Res; 2005 Jul; 65(14):6476-83. PubMed ID: 16024653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific chemopreventive agents trigger proteasomal degradation of G1 cyclins: implications for combination therapy.
    Dragnev KH; Pitha-Rowe I; Ma Y; Petty WJ; Sekula D; Murphy B; Rendi M; Suh N; Desai NB; Sporn MB; Freemantle SJ; Dmitrovsky E
    Clin Cancer Res; 2004 Apr; 10(7):2570-7. PubMed ID: 15073138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin proteolysis as a retinoid cancer prevention mechanism.
    Dragnev KH; Freemantle SJ; Spinella MJ; Dmitrovsky E
    Ann N Y Acad Sci; 2001 Dec; 952():13-22. PubMed ID: 11795432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin-dependent and -independent proteasomal degradation of hepatitis B virus X protein.
    Kim JH; Sohn SY; Benedict Yen TS; Ahn BY
    Biochem Biophys Res Commun; 2008 Feb; 366(4):1036-42. PubMed ID: 18155658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of cytoplasmic cyclin D1 mutants.
    Murakami H; Horihata M; Andojo S; Yoneda-Kato N; Kato JY
    FEBS Lett; 2009 May; 583(10):1575-80. PubMed ID: 19409388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of cyclin D1 at Thr 286 during S phase leads to its proteasomal degradation and allows efficient DNA synthesis.
    Guo Y; Yang K; Harwalkar J; Nye JM; Mason DR; Garrett MD; Hitomi M; Stacey DW
    Oncogene; 2005 Apr; 24(16):2599-612. PubMed ID: 15735756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine 269 is essential for cyclin D1 ubiquitylation by the SCF(Fbx4/alphaB-crystallin) ligase and subsequent proteasome-dependent degradation.
    Barbash O; Egan E; Pontano LL; Kosak J; Diehl JA
    Oncogene; 2009 Dec; 28(49):4317-25. PubMed ID: 19767775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells.
    Alao JP; Stavropoulou AV; Lam EW; Coombes RC; Vigushin DM
    Mol Cancer; 2006 Feb; 5():8. PubMed ID: 16504004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sesamin, a lignan of sesame, down-regulates cyclin D1 protein expression in human tumor cells.
    Yokota T; Matsuzaki Y; Koyama M; Hitomi T; Kawanaka M; Enoki-Konishi M; Okuyama Y; Takayasu J; Nishino H; Nishikawa A; Osawa T; Sakai T
    Cancer Sci; 2007 Sep; 98(9):1447-53. PubMed ID: 17640297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of major lysine residues of S(3)-RNase of Petunia inflata involved in ubiquitin-26S proteasome-mediated degradation in vitro.
    Hua Z; Kao TH
    Plant J; 2008 Jun; 54(6):1094-104. PubMed ID: 18346191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism.
    Langenfeld J; Kiyokawa H; Sekula D; Boyle J; Dmitrovsky E
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):12070-4. PubMed ID: 9342364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclin degradation for cancer therapy and chemoprevention.
    Freemantle SJ; Liu X; Feng Q; Galimberti F; Blumen S; Sekula D; Kitareewan S; Dragnev KH; Dmitrovsky E
    J Cell Biochem; 2007 Nov; 102(4):869-77. PubMed ID: 17868090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of small-molecule cyclin D1-ablative agents.
    Huang JW; Shiau CW; Yang J; Wang DS; Chiu HC; Chen CY; Chen CS
    J Med Chem; 2006 Jul; 49(15):4684-9. PubMed ID: 16854074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation.
    Okabe H; Lee SH; Phuchareon J; Albertson DG; McCormick F; Tetsu O
    PLoS One; 2006 Dec; 1(1):e128. PubMed ID: 17205132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines.
    Alao JP; Gamble SC; Stavropoulou AV; Pomeranz KM; Lam EW; Coombes RC; Vigushin DM
    Mol Cancer; 2006 Feb; 5():7. PubMed ID: 16503970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation.
    Zhang M; Xie R; Hou W; Wang B; Shen R; Wang X; Wang Q; Zhu T; Jonason JH; Chen D
    J Cell Sci; 2009 May; 122(Pt 9):1382-9. PubMed ID: 19351720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor.
    Kravtsova-Ivantsiv Y; Cohen S; Ciechanover A
    Mol Cell; 2009 Feb; 33(4):496-504. PubMed ID: 19250910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminal domain of MyoD is necessary and sufficient for its nuclear localization-dependent degradation by the ubiquitin system.
    Sadeh R; Breitschopf K; Bercovich B; Zoabi M; Kravtsova-Ivantsiv Y; Kornitzer D; Schwartz A; Ciechanover A
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15690-5. PubMed ID: 18836078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers.
    Mehta TS; Lu H; Wang X; Urvalek AM; Nguyen KH; Monzur F; Hammond JD; Ma JQ; Zhao J
    Cell Res; 2009 Sep; 19(9):1098-109. PubMed ID: 19488069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.