These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Template-controlled assembly of ditopic catechol phosphines: a strategy for the generation of complexes of bidentate phosphines with different bite angles. Chikkali SH; Gudat D; Lissner F; Niemeyer M; Schleid T; Nieger M Chemistry; 2009; 15(2):482-91. PubMed ID: 19035585 [TBL] [Abstract][Full Text] [Related]
3. The cyclic "silver-diphos" motif [Ag2(mu-diphosphine)2]2+ as a synthon for building up larger structures. Miller PW; Nieuwenhuyzen M; Charmant JP; James SL Inorg Chem; 2008 Sep; 47(18):8367-79. PubMed ID: 18698693 [TBL] [Abstract][Full Text] [Related]
5. Dendritic effects in catalysis by Pd complexes of bidentate phosphines on a dendronized support: Heck vs. carbonylation reactions. Mansour A; Kehat T; Portnoy M Org Biomol Chem; 2008 Sep; 6(18):3382-7. PubMed ID: 18802646 [TBL] [Abstract][Full Text] [Related]
6. Boron templated catechol phosphines as bidentate ligands in silver complexes. Chikkali SH; Gudat D; Lissner F; Nieger M; Schleid T Dalton Trans; 2007 Sep; (35):3906-13. PubMed ID: 17893788 [TBL] [Abstract][Full Text] [Related]
7. Ruthenium carbene complexes bearing an anionic carboxylate chelated to a hemilabile ligand. Samec JS; Grubbs RH Chemistry; 2008; 14(9):2686-92. PubMed ID: 18236478 [TBL] [Abstract][Full Text] [Related]
8. Influence of conformational flexibility on self-assembly and luminescence properties of lanthanide coordination polymers with flexible exo-bidentate biphenol derivatives. Guo Y; Dou W; Zhou X; Liu W; Qin W; Zang Z; Zhang H; Wang D Inorg Chem; 2009 Apr; 48(8):3581-90. PubMed ID: 19290612 [TBL] [Abstract][Full Text] [Related]
9. Metal template controlled formation of [11]ane-P2C(NHC) macrocycles. Kaufhold O; Stasch A; Pape T; Hepp A; Edwards PG; Newman PD; Hahn FE J Am Chem Soc; 2009 Jan; 131(1):306-17. PubMed ID: 19067517 [TBL] [Abstract][Full Text] [Related]
10. Probing the importance of the hemilabile site of bis(phosphine) monoxide ligands in the copper-catalyzed addition of diethylzinc to N-phosphinoylimines: discovery of new effective chiral ligands. Bonnaventure I; Charette AB J Org Chem; 2008 Aug; 73(16):6330-40. PubMed ID: 18637691 [TBL] [Abstract][Full Text] [Related]
11. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand. Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296 [TBL] [Abstract][Full Text] [Related]
12. Sterically-directed consecutive and size-selective self-assembly of palladium diphosphane complexes with an Ar-BIAN ligand: unexpected formation of pentameric and hexameric aggregates. Holló-Sitkei E; Szalontai G; Lois I; Gömöry A; Pollreisz F; Párkányi L; Jude H; Besenyei G Chemistry; 2009 Oct; 15(40):10620-33. PubMed ID: 19746472 [TBL] [Abstract][Full Text] [Related]
13. Lewis base assisted Brønsted base catalysis: bidentate phosphine oxides as activators and modulators of Brønsted basic lanthanum-aryloxides. Morimoto H; Yoshino T; Yukawa T; Lu G; Matsunaga S; Shibasaki M Angew Chem Int Ed Engl; 2008; 47(47):9125-9. PubMed ID: 18925596 [No Abstract] [Full Text] [Related]
14. A hemilabile binucleating pincer ligand for self-assembly of coordination oligomers and polymers. Zhao CQ; Jennings MC; Puddephatt RJ Dalton Trans; 2008 Mar; (9):1243-50. PubMed ID: 18283385 [TBL] [Abstract][Full Text] [Related]
15. Ligand effects in the non-alternating CO-ethylene copolymerization by palladium(II) catalysis. Bettucci L; Bianchini C; Claver C; Suarez EJ; Ruiz A; Meli A; Oberhauser W Dalton Trans; 2007 Dec; (47):5590-602. PubMed ID: 18043822 [TBL] [Abstract][Full Text] [Related]
16. Phosphines as building blocks in coordination-based self-assembly. James SL Chem Soc Rev; 2009 Jun; 38(6):1744-58. PubMed ID: 19587966 [TBL] [Abstract][Full Text] [Related]
17. Ambiphilic diphosphine-borane ligands: metal-->borane interactions within isoelectronic complexes of rhodium, platinum and palladium. Bontemps S; Sircoglou M; Bouhadir G; Puschmann H; Howard JA; Dyer PW; Miqueu K; Bourissou D Chemistry; 2008; 14(2):731-40. PubMed ID: 17948327 [TBL] [Abstract][Full Text] [Related]
18. Cu(I) complexes bearing the new sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate ligand and the water-soluble phosphine 1,3,5-triaza-7-phosphaadamantane or related ligands. Wanke R; Smoleński P; da Silva MF; Martins LM; Pombeiro AJ Inorg Chem; 2008 Nov; 47(21):10158-68. PubMed ID: 18841929 [TBL] [Abstract][Full Text] [Related]
19. Ligand reprogramming in dinuclear helicate complexes: a consequence of allosteric or electrostatic effects? Jeffery JC; Rice CR; Harding LP; Baylies CJ; Riis-Johannessen T Chemistry; 2007; 13(18):5256-71. PubMed ID: 17431869 [TBL] [Abstract][Full Text] [Related]
20. Models of the iron-only hydrogenase: structural studies of chelating diphosphine complexes [Fe2(CO)4(micro-pdt)(kappa2P,P'-diphosphine)]. Adam FI; Hogarth G; Richards I; Sanchez BE Dalton Trans; 2007 Jun; (24):2495-8. PubMed ID: 17563784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]