These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17311244)

  • 1. A study on the condition for differential electrophoretic transport at a channel entrance.
    Pacheco JR; Chen KP; Hayes MA
    Electrophoresis; 2007 Apr; 28(7):1027-35. PubMed ID: 17311244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-D transient electrophoretic motion of a spherical particle in a T-shaped rectangular microchannel.
    Ye C; Li D
    J Colloid Interface Sci; 2004 Apr; 272(2):480-8. PubMed ID: 15028514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady transport phenomena in free-flow electrophoresis--prerequisite of ultrafast sample cleaning in microfluidic devices.
    Klepárník K; Otevrel M
    Electrophoresis; 2004 Nov; 25(21-22):3633-42. PubMed ID: 15565699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic exclusion for the selective transport of small molecules.
    Meighan MM; Keebaugh MW; Quihuis AM; Kenyon SM; Hayes MA
    Electrophoresis; 2009 Nov; 30(21):3786-92. PubMed ID: 19810029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeta potential determination by streaming current modelization and measurement in electrophoretic microfluidic systems.
    Renaud L; Kleimann P; Morin P
    Electrophoresis; 2004 Jan; 25(1):123-7. PubMed ID: 14730576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion separation in nanofluidics.
    Xuan X
    Electrophoresis; 2008 Sep; 29(18):3737-43. PubMed ID: 18850643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study and numerical estimation of current changes in electroosmotically pumped microfluidic devices.
    Rodríguez I; Chandrasekhar N
    Electrophoresis; 2005 Mar; 26(6):1114-21. PubMed ID: 15706573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient elution moving boundary electrophoresis with channel current detection.
    Ross D; Romantseva EF
    Anal Chem; 2009 Sep; 81(17):7326-35. PubMed ID: 19663449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers.
    Chen L; Conlisk AT
    Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of electrophoretic exclusion method for the concentration and differentiation of proteins.
    Meighan MM; Vasquez J; Dziubcynski L; Hews S; Hayes MA
    Anal Chem; 2011 Jan; 83(1):368-73. PubMed ID: 21141826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels.
    Das S; Subramanian K; Chakraborty S
    Colloids Surf B Biointerfaces; 2007 Aug; 58(2):203-17. PubMed ID: 17481862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow rate analysis of a surface tension driven passive micropump.
    Berthier E; Beebe DJ
    Lab Chip; 2007 Nov; 7(11):1475-8. PubMed ID: 17960274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow rate limitation in open capillary channel flows.
    Haake D; Rosendahl U; Ohlhoff A; Dreyer ME
    Ann N Y Acad Sci; 2006 Sep; 1077():443-58. PubMed ID: 17124140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design criteria for soil cleaning operations in electrokinetic remediation: hydrodynamic aspects in a cylindrical geometry.
    Oyanader MA; Arce P; Dzurik A
    Electrophoresis; 2005 Aug; 26(15):2878-87. PubMed ID: 16007700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boundary effects on the electrophoretic motion of cylindrical particles: concentrically and eccentrically-positioned particles in a capillary.
    Davison SM; Sharp KV
    J Colloid Interface Sci; 2006 Nov; 303(1):288-97. PubMed ID: 16920138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injection and flow control system for microchannels.
    Fütterer C; Minc N; Bormuth V; Codarbox JH; Laval P; Rossier J; Viovy JL
    Lab Chip; 2004 Aug; 4(4):351-6. PubMed ID: 15269803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of aggregation on the separation performance of bacteria in capillary electrophoresis.
    Haugg M; Kaiser V; Schmidtkunz C; Welsch T
    Electrophoresis; 2009 Jan; 30(2):396-402. PubMed ID: 19137526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.