BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17311312)

  • 1. Effects of femtosecond laser irradiation on osseous tissues.
    Girard B; Yu D; Armstrong MR; Wilson BC; Clokie CM; Miller RJ
    Lasers Surg Med; 2007 Mar; 39(3):273-85. PubMed ID: 17311312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myocardium tissue ablation with high-peak-power nanosecond 1,064- and 532-nm pulsed lasers: influence of laser-induced plasma.
    Ogura M; Sato S; Ishihara M; Kawauchi S; Arai T; Matsui T; Kurita A; Kikuchi M; Ashida H; Obara M
    Lasers Surg Med; 2002; 31(2):136-41. PubMed ID: 12210598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser-assisted retinal imaging and ablation: experimental pilot study.
    Hild M; Krause M; Riemann I; Mestres P; Toropygin S; Löw U; Brückner K; Seitz B; Jonescu-Cuypers C; König K
    Curr Eye Res; 2008 Apr; 33(4):351-63. PubMed ID: 18398710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of laser repetition rate on corneal tissue ablation for 193-nm excimer laser light.
    Shanyfelt LM; Dickrell PL; Edelhauser HF; Hahn DW
    Lasers Surg Med; 2008 Sep; 40(7):483-93. PubMed ID: 18727026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Er:YAG and 9.6-microm TE CO(2) lasers for ablation of skull tissue.
    Fried NM; Fried D
    Lasers Surg Med; 2001; 28(4):335-43. PubMed ID: 11344514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Photoablation using Excimer laser irradiation--a suitable concept for microneurosurgery?].
    König HJ; Bücker G; Stefanec A; Hiller U; Gullotta F
    Neurochirurgia (Stuttg); 1993 Jul; 36(4):105-9. PubMed ID: 8350970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Femtosecond laser ablation and scanning microscopy of the internal retinal limiting membrane: an experimental study].
    Toropygin SG; Krause M; Reimann I; Hille K; Mestres P; Ruprecht KW; Seitz B; Brückner K; Jonescu-Cuypers C; König K
    Vestn Oftalmol; 2009; 125(5):21-8. PubMed ID: 19916329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser photodisruption of primate trabecular meshwork: an ex vivo study.
    Nakamura H; Liu Y; Witt TE; Gordon RJ; Edward DP
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1198-204. PubMed ID: 18836174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.
    Stachs O; Schumacher S; Hovakimyan M; Fromm M; Heisterkamp A; Lubatschowski H; Guthoff R
    J Cataract Refract Surg; 2009 Nov; 35(11):1979-83. PubMed ID: 19878832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ablation of femural bone with femtosecond laser pulses--a feasibility study.
    Liu Y; Niemz M
    Lasers Med Sci; 2007 Sep; 22(3):171-4. PubMed ID: 17242869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors.
    Saracino S; Mozzati M; Martinasso G; Pol R; Canuto RA; Muzio G
    Lasers Surg Med; 2009 Apr; 41(4):298-304. PubMed ID: 19347943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ablation of temporomandibular joint structures of a pig with a fibre-guided 308 nm excimer laser light--an in vitro investigation.
    Haffner C; Folwaczny M; Hickel R; Horch HH
    J Craniomaxillofac Surg; 2004 Dec; 32(6):360-4. PubMed ID: 15555518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fs-laser scissors for photobleaching, ablation in fixed samples and living cells, and studies of cell mechanics.
    Heisterkamp A; Baumgart J; Maxwell IZ; Ngezahayo A; Mazur E; Lubatschowski H
    Methods Cell Biol; 2007; 82():293-307. PubMed ID: 17586261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm.
    Youn JI; Sweet P; Peavy GM
    Lasers Surg Med; 2007 Apr; 39(4):332-40. PubMed ID: 17457836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative micromorphologic in vitro porcine study of IntraLase and Femto LDV femtosecond lasers.
    Kermani O; Oberheide U
    J Cataract Refract Surg; 2008 Aug; 34(8):1393-9. PubMed ID: 18655994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histologic evaluation of interstitial lipolysis comparing a 1064, 1320 and 2100 nm laser in an ex vivo model.
    Khoury JG; Saluja R; Keel D; Detwiler S; Goldman MP
    Lasers Surg Med; 2008 Aug; 40(6):402-6. PubMed ID: 18649385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of three different laser wavelengths for in vitro wound healing.
    Evans DH; Abrahamse H
    Photodermatol Photoimmunol Photomed; 2008 Aug; 24(4):199-210. PubMed ID: 18717961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro femtosecond laser-assisted nanosurgery of porcine posterior capsule.
    Toropygin SG; Krause M; Riemann I; Seitz B; Mestres P; Ruprecht KW; König K
    J Cataract Refract Surg; 2008 Dec; 34(12):2128-32. PubMed ID: 19027571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic estimation of thermal distribution in the vicinity of femtosecond laser-induced optical breakdown.
    Zohdy MJ; Tse C; Ye JY; O'Donnell M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2347-55. PubMed ID: 17073341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.