These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17311316)

  • 1. Fracture of Ni-Ti superelastic alloy under sustained tensile load in physiological saline solution containing hydrogen peroxide.
    Yokoyama K; Ogawa T; Fujita A; Asaoka K; Sakai J
    J Biomed Mater Res A; 2007 Sep; 82(3):558-67. PubMed ID: 17311316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed fracture of Ni-Ti superelastic alloys in acidic and neutral fluoride solutions.
    Yokoyama K; Kaneko K; Moriyama K; Asaoka K; Sakai J; Nagumo M
    J Biomed Mater Res A; 2004 Apr; 69(1):105-13. PubMed ID: 14999757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen embrittlement of Ni-Ti superelastic alloy in fluoride solution.
    Yokoyama K; Kaneko K; Moriyama K; Asaoka K; Sakai J; Nagumo M
    J Biomed Mater Res A; 2003 May; 65(2):182-7. PubMed ID: 12734810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions.
    Yokoyama K; Kaneko K; Ogawa T; Moriyama K; Asaoka K; Sakai J
    Biomaterials; 2005 Jan; 26(1):101-8. PubMed ID: 15193885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of hydrogen embrittlement of Ni-Ti superelastic alloy in acid fluoride solution by hydrogen peroxide addition.
    Yokoyama K; Yazaki Y; Sakai J
    J Biomed Mater Res A; 2011 Sep; 98(3):404-11. PubMed ID: 21630433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fracture associated with hydrogen absorption of sustained tensile-loaded titanium in acid and neutral fluoride solutions.
    Yokoyama K; Kaneko K; Miyamoto Y; Asaoka K; Sakai J; Nagumo M
    J Biomed Mater Res A; 2004 Jan; 68(1):150-8. PubMed ID: 14661260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.
    Hiromoto S; Onodera E; Chiba A; Asami K; Hanawa T
    Biomaterials; 2005 Aug; 26(24):4912-23. PubMed ID: 15769525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Ni-free superelastic alloy for orthodontic applications.
    Arciniegas M; Manero JM; Espinar E; Llamas JM; Barrera JM; Gil FJ
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3325-8. PubMed ID: 23706217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress corrosion cracking of NiTi in artificial saliva.
    Wang J; Li N; Rao G; Han EH; Ke W
    Dent Mater; 2007 Feb; 23(2):133-7. PubMed ID: 16466784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amount of metallic ions released from Ti-Ni alloy by abrasion in simulated bioliquids.
    Watarai M; Hanawa T; Moriyama K; Asaoka K
    Biomed Mater Eng; 1999; 9(2):73-9. PubMed ID: 10524290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys.
    Ramarolahy A; Castany P; Prima F; Laheurte P; PĂ©ron I; Gloriant T
    J Mech Behav Biomed Mater; 2012 May; 9():83-90. PubMed ID: 22498286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation.
    Li SJ; Cui TC; Hao YL; Yang R
    Acta Biomater; 2008 Mar; 4(2):305-17. PubMed ID: 18006397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical release testing of nickel-titanium orthodontic wires in artificial saliva using thin layer activation.
    Cioffi M; Gilliland D; Ceccone G; Chiesa R; Cigada A
    Acta Biomater; 2005 Nov; 1(6):717-24. PubMed ID: 16701852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterisation of a new superelastic Ti-25Ta-25Nb biomedical alloy.
    Bertrand E; Gloriant T; Gordin DM; Vasilescu E; Drob P; Vasilescu C; Drob SI
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):559-64. PubMed ID: 20826361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures.
    Pun DK; Berzins DW
    Dent Mater; 2008 Feb; 24(2):221-7. PubMed ID: 17624421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.
    Lin B; Gall K; Maier HJ; Waldron R
    Acta Biomater; 2009 Jan; 5(1):257-67. PubMed ID: 18718825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion behaviour of Ti-15Mo alloy for dental implant applications.
    Kumar S; Narayanan TS
    J Dent; 2008 Jul; 36(7):500-7. PubMed ID: 18468762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility.
    Fu J; Yamamoto A; Kim HY; Hosoda H; Miyazaki S
    Acta Biomater; 2015 Apr; 17():56-67. PubMed ID: 25676584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids.
    Yan XJ; Yang DZ
    J Biomed Mater Res A; 2006 Apr; 77(1):97-102. PubMed ID: 16392124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of titanium base alloys-biofluids interface.
    Popa MV; Demetrescu I; Suh SH; Vasilescu E; Drob P; Ionita D; Vasilescu C
    Bioelectrochemistry; 2007 Nov; 71(2):126-34. PubMed ID: 17409027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.