These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17311383)

  • 1. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry.
    Pradhan N; Peng X
    J Am Chem Soc; 2007 Mar; 129(11):3339-47. PubMed ID: 17311383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of highly luminescent Mn-doped ZnS nanocrystals.
    Zhang W; Li Y; Zhang H; Zhou X; Zhong X
    Inorg Chem; 2011 Oct; 50(20):10432-8. PubMed ID: 21928786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters.
    Xie R; Peng X
    J Am Chem Soc; 2009 Aug; 131(30):10645-51. PubMed ID: 19588970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A case study: Te in ZnSe and Mn-doped ZnSe quantum dots.
    Sonawane KG; Rajesh Ch; Temgire M; Mahamuni S
    Nanotechnology; 2011 Jul; 22(30):305702. PubMed ID: 21705825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media.
    Fang Z; Wu P; Zhong X; Yang YJ
    Nanotechnology; 2010 Jul; 21(30):305604. PubMed ID: 20610870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of Mn doped ZnS d-dots with controllable dual-color emissions.
    Dong B; Cao L; Su G; Liu W
    J Colloid Interface Sci; 2012 Feb; 367(1):178-82. PubMed ID: 22041193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals.
    Pradhan N; Goorskey D; Thessing J; Peng X
    J Am Chem Soc; 2005 Dec; 127(50):17586-7. PubMed ID: 16351071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels.
    Pradhan N; Battaglia DM; Liu Y; Peng X
    Nano Lett; 2007 Feb; 7(2):312-7. PubMed ID: 17297994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors.
    Xie R; Rutherford M; Peng X
    J Am Chem Soc; 2009 Apr; 131(15):5691-7. PubMed ID: 19331353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots.
    Yuan X; Zheng J; Zeng R; Jing P; Ji W; Zhao J; Yang W; Li H
    Nanoscale; 2014 Jan; 6(1):300-7. PubMed ID: 24192996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoluminescence brightening via electrochemical trap passivation in ZnSe and Mn(2+)-doped ZnSe quantum dots.
    Weaver AL; Gamelin DR
    J Am Chem Soc; 2012 Apr; 134(15):6819-25. PubMed ID: 22417458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots.
    Qian H; Qiu X; Li L; Ren J
    J Phys Chem B; 2006 May; 110(18):9034-40. PubMed ID: 16671712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous synthesis of Cu-doped ZnCdS/ZnS core/shell nanocrystals with a new and highly reactive sulfur source.
    Zeng R; Shen R; Zhao Y; Li X; Sun Z; Shen Y
    Nanotechnology; 2014 Apr; 25(13):135602. PubMed ID: 24583650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of confinement effects in ZnO quantum dots.
    Haranath D; Sahai S; Joshi AG; Gupta BK; Shanker V
    Nanotechnology; 2009 Oct; 20(42):425701. PubMed ID: 19779241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Microwave-assisted synthesis and fluorescence property of mn-doped ZnSe nanoparticles].
    Han DM; Song CF; Li XY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Sep; 30(9):2331-4. PubMed ID: 21105389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale.
    Archer PI; Santangelo SA; Gamelin DR
    J Am Chem Soc; 2007 Aug; 129(31):9808-18. PubMed ID: 17629274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications.
    Ouyang J; Schuurmans C; Zhang Y; Nagelkerke R; Wu X; Kingston D; Wang ZY; Wilkinson D; Li C; Leek DM; Tao Y; Yu K
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):553-65. PubMed ID: 21244024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Giant excitonic Zeeman splittings in colloidal Co2+ -doped ZnSe quantum dots.
    Norberg NS; Parks GL; Salley GM; Gamelin DR
    J Am Chem Soc; 2006 Oct; 128(40):13195-203. PubMed ID: 17017799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.