These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 17311409)
1. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase. Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409 [TBL] [Abstract][Full Text] [Related]
2. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
3. Two conserved threonines collaborate in the Escherichia coli leucyl-tRNA synthetase amino acid editing mechanism. Zhai Y; Martinis SA Biochemistry; 2005 Nov; 44(47):15437-43. PubMed ID: 16300391 [TBL] [Abstract][Full Text] [Related]
4. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Mursinna RS; Lee KW; Briggs JM; Martinis SA Biochemistry; 2004 Jan; 43(1):155-65. PubMed ID: 14705941 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. Fukunaga R; Yokoyama S J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927 [TBL] [Abstract][Full Text] [Related]
6. Two tyrosine residues outside the editing active site in Giardia lamblia leucyl-tRNA synthetase are essential for the post-transfer editing. Zhou XL; Wang ED Biochem Biophys Res Commun; 2009 Aug; 386(3):510-5. PubMed ID: 19540202 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase. Fukunaga R; Yokoyama S J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013 [TBL] [Abstract][Full Text] [Related]
8. Isolated CP1 domain of Escherichia coli leucyl-tRNA synthetase is dependent on flanking hinge motifs for amino acid editing activity. Betha AK; Williams AM; Martinis SA Biochemistry; 2007 May; 46(21):6258-67. PubMed ID: 17474713 [TBL] [Abstract][Full Text] [Related]
9. A conserved threonine within Escherichia coli leucyl-tRNA synthetase prevents hydrolytic editing of leucyl-tRNALeu. Mursinna RS; Lincecum TL; Martinis SA Biochemistry; 2001 May; 40(18):5376-81. PubMed ID: 11331000 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination. Liu Y; Liao J; Zhu B; Wang ED; Ding J Biochem J; 2006 Mar; 394(Pt 2):399-407. PubMed ID: 16277600 [TBL] [Abstract][Full Text] [Related]
11. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. Zhao MW; Zhu B; Hao R; Xu MG; Eriani G; Wang ED EMBO J; 2005 Apr; 24(7):1430-9. PubMed ID: 15775966 [TBL] [Abstract][Full Text] [Related]
12. An aminoacyl-tRNA synthetase with a defunct editing site. Lue SW; Kelley SO Biochemistry; 2005 Mar; 44(8):3010-6. PubMed ID: 15723544 [TBL] [Abstract][Full Text] [Related]
13. Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase. Tan M; Zhu B; Liu RJ; Chen X; Zhou XL; Wang ED Biochem J; 2013 Jan; 449(1):123-31. PubMed ID: 23035846 [TBL] [Abstract][Full Text] [Related]
14. Molecular and functional dissection of a putative RNA-binding region in yeast mitochondrial leucyl-tRNA synthetase. Nawaz MH; Pang YL; Martinis SA J Mol Biol; 2007 Mar; 367(2):384-94. PubMed ID: 17270210 [TBL] [Abstract][Full Text] [Related]
15. Groups on the side chain of T252 in Escherichia coli leucyl-tRNA synthetase are important for discrimination of amino acids and cell viability. Xu MG; Li J; Du X; Wang ED Biochem Biophys Res Commun; 2004 May; 318(1):11-6. PubMed ID: 15110746 [TBL] [Abstract][Full Text] [Related]
16. Functional segregation of a predicted "hinge" site within the beta-strand linkers of Escherichia coli leucyl-tRNA synthetase. Mascarenhas AP; Martinis SA Biochemistry; 2008 Apr; 47(16):4808-16. PubMed ID: 18363380 [TBL] [Abstract][Full Text] [Related]
17. Kinetic Origin of Substrate Specificity in Post-Transfer Editing by Leucyl-tRNA Synthetase. Dulic M; Cvetesic N; Zivkovic I; Palencia A; Cusack S; Bertosa B; Gruic-Sovulj I J Mol Biol; 2018 Jan; 430(1):1-16. PubMed ID: 29111343 [TBL] [Abstract][Full Text] [Related]
18. A naturally occurring nonapeptide functionally compensates for the CP1 domain of leucyl-tRNA synthetase to modulate aminoacylation activity. Tan M; Yan W; Liu RJ; Wang M; Chen X; Zhou XL; Wang ED Biochem J; 2012 Apr; 443(2):477-84. PubMed ID: 22292813 [TBL] [Abstract][Full Text] [Related]
19. Molecular dynamics simulation study of valyl-tRNA synthetase with its pre- and post-transfer editing substrates. Bharatham N; Bharatham K; Lee Y; Woo Lee K Biophys Chem; 2009 Jul; 143(1-2):34-43. PubMed ID: 19398261 [TBL] [Abstract][Full Text] [Related]
20. Hydrolysis of non-cognate aminoacyl-adenylates by a class II aminoacyl-tRNA synthetase lacking an editing domain. Gruic-Sovulj I; Rokov-Plavec J; Weygand-Durasevic I FEBS Lett; 2007 Oct; 581(26):5110-4. PubMed ID: 17931630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]