BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17311785)

  • 1. Hand rehabilitation following stroke: a pilot study of assisted finger extension training in a virtual environment.
    Fischer HC; Stubblefield K; Kline T; Luo X; Kenyon RV; Kamper DG
    Top Stroke Rehabil; 2007; 14(1):1-12. PubMed ID: 17311785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attempting to improve function and quality of life using the FTM Protocol: case report.
    Butler A; Blanton S; Rowe V; Wolf S
    J Neurol Phys Ther; 2006 Sep; 30(3):148-56. PubMed ID: 17029658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giving Them a Hand: Wearing a Myoelectric Elbow-Wrist-Hand Orthosis Reduces Upper Extremity Impairment in Chronic Stroke.
    Peters HT; Page SJ; Persch A
    Arch Phys Med Rehabil; 2017 Sep; 98(9):1821-1827. PubMed ID: 28130084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pilot study to assess use of passive extension bias to facilitate finger movement for repetitive task practice after stroke.
    Iwamuro BT; Fischer HC; Kamper DG
    Top Stroke Rehabil; 2011; 18(4):308-15. PubMed ID: 21914595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.
    Fluet GG; Patel J; Qiu Q; Yarossi M; Massood S; Adamovich SV; Tunik E; Merians AS
    Disabil Rehabil; 2017 Jul; 39(15):1524-1531. PubMed ID: 27669997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carryover effects of cyclical stretching of the digits on hand function in stroke survivors.
    Triandafilou KM; Kamper DG
    Arch Phys Med Rehabil; 2014 Aug; 95(8):1571-6. PubMed ID: 24794423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapy incorporating a dynamic wrist-hand orthosis versus manual assistance in chronic stroke: a pilot study.
    Barry JG; Ross SA; Woehrle J
    J Neurol Phys Ther; 2012 Mar; 36(1):17-24. PubMed ID: 22354108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.
    Perez-Marcos D; Chevalley O; Schmidlin T; Garipelli G; Serino A; Vuadens P; Tadi T; Blanke O; Millán JDR
    J Neuroeng Rehabil; 2017 Nov; 14(1):119. PubMed ID: 29149855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Virtual Reality-based Bilateral Upper Extremity Training on Upper Extremity Function after Stroke: A Randomized Controlled Clinical Trial.
    Lee S; Kim Y; Lee BH
    Occup Ther Int; 2016 Dec; 23(4):357-368. PubMed ID: 27419927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of intensive training with a spring-assisted hand orthosis on movement smoothness in upper extremity following stroke: a pilot clinical trial.
    Jeon HS; Woo YK; Yi CH; Kwon OY; Jung MY; Lee YH; Hwang S; Choi BR
    Top Stroke Rehabil; 2012; 19(4):320-8. PubMed ID: 22750961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke.
    Colomer C; Llorens R; Noé E; Alcañiz M
    J Neuroeng Rehabil; 2016 May; 13(1):45. PubMed ID: 27169462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial.
    Nijenhuis SM; Prange-Lasonder GB; Stienen AH; Rietman JS; Buurke JH
    Clin Rehabil; 2017 Feb; 31(2):207-216. PubMed ID: 26869596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis.
    Housman SJ; Scott KM; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2009 Jun; 23(5):505-14. PubMed ID: 19237734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial.
    Rowe JB; Chan V; Ingemanson ML; Cramer SC; Wolbrecht ET; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2017 Aug; 31(8):769-780. PubMed ID: 28803535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active finger extension predicts outcomes after constraint-induced movement therapy for individuals with hemiparesis after stroke.
    Fritz SL; Light KE; Patterson TS; Behrman AL; Davis SB
    Stroke; 2005 Jun; 36(6):1172-7. PubMed ID: 15890987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke.
    Whitall J; McCombe Waller S; Silver KH; Macko RF
    Stroke; 2000 Oct; 31(10):2390-5. PubMed ID: 11022069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-based electrical stimulation training in a stroke patient with minimal movement in the paretic upper extremity.
    Page SJ; Maslyn S; Hermann VH; Wu A; Dunning K; Levine PG
    Neurorehabil Neural Repair; 2009; 23(6):595-9. PubMed ID: 19095624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.