BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 1731253)

  • 21. Homologous DNA pairing domain peptides of RecA protein: intrinsic propensity to form beta-structures and filaments.
    Wang L; Voloshin ON; Stasiak A; Camerini-Otero RD
    J Mol Biol; 1998 Mar; 277(1):1-11. PubMed ID: 9514744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mycobacterium smegmatis RecA protein is structurally similar to but functionally distinct from Mycobacterium tuberculosis RecA.
    Ganesh N; Muniyappa K
    Proteins; 2003 Oct; 53(1):6-17. PubMed ID: 12945045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-dependent inhibition of recA protein-catalyzed ATP hydrolysis by ATPgammaS: evidence for a rate-determining isomerization of the recA-ssDNA complex.
    Paulus BF; Bryant FR
    Biochemistry; 1997 Jun; 36(25):7832-8. PubMed ID: 9201926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RecA protein dynamics in the interior of RecA nucleoprotein filaments.
    Shan Q; Cox MM
    J Mol Biol; 1996 Apr; 257(4):756-74. PubMed ID: 8636980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of bacteriophage T4 UvsX and human Rad51 filaments suggests that RecA-like polymers may have evolved independently.
    Yang S; VanLoock MS; Yu X; Egelman EH
    J Mol Biol; 2001 Oct; 312(5):999-1009. PubMed ID: 11580245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An interaction between a specified surface of the C-terminal domain of RecA protein and double-stranded DNA for homologous pairing.
    Aihara H; Ito Y; Kurumizaka H; Terada T; Yokoyama S; Shibata T
    J Mol Biol; 1997 Nov; 274(2):213-21. PubMed ID: 9398528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two mutant RecA proteins possessing pH-dependent strand exchange activity exhibit pH-dependent presynaptic filament formation.
    Pinsince JM; Muench KA; Bryant FR; Griffith JD
    J Mol Biol; 1993 Sep; 233(1):59-66. PubMed ID: 8377192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions.
    Kowalczykowski SC; Krupp RA
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3478-82. PubMed ID: 7724585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating structural changes induced by nucleotide binding to RecA using difference FTIR.
    Butler BC; Hanchett RH; Rafailov H; MacDonald G
    Biophys J; 2002 Apr; 82(4):2198-210. PubMed ID: 11916875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Introduction of a tryptophan reporter group into loop 1 of the recA protein. Examination of the conformational states of the recA-ssDNA complex by fluorescence spectroscopy.
    Stole E; Bryant FR
    J Biol Chem; 1994 Mar; 269(11):7919-25. PubMed ID: 8132511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of RecA protein binding to DNA by opposing effects of ATP and ADP on inter-domain contacts: analysis by urea-induced unfolding of wild-type and C-terminal truncated RecA.
    Yamazaki J; Horii T; Sekiguchi M; Takahashi M
    J Mol Biol; 2003 May; 329(2):363-70. PubMed ID: 12758082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of recA protein promoted ATP hydrolysis. 2. Longitudinal assembly and disassembly of recA protein filaments mediated by ATP and ADP.
    Lee JW; Cox MM
    Biochemistry; 1990 Aug; 29(33):7677-83. PubMed ID: 2271526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ADP-dependent DNA strand exchange by the mutant [P67G/E68A] RecA protein.
    Nayak S; Hildebrand EL; Bryant FR
    J Biol Chem; 2001 May; 276(18):14933-8. PubMed ID: 11279076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for elongation of the helical pitch of the RecA filament upon ATP and ADP binding using small-angle neutron scattering.
    Ellouze C; Takahashi M; Wittung P; Mortensen K; Schnarr M; Nordén B
    Eur J Biochem; 1995 Oct; 233(2):579-83. PubMed ID: 7588804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation.
    Datta S; Prabu MM; Vaze MB; Ganesh N; Chandra NR; Muniyappa K; Vijayan M
    Nucleic Acids Res; 2000 Dec; 28(24):4964-73. PubMed ID: 11121488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ATP-mediated conformational changes in the RecA filament.
    VanLoock MS; Yu X; Yang S; Lai AL; Low C; Campbell MJ; Egelman EH
    Structure; 2003 Feb; 11(2):187-96. PubMed ID: 12575938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation.
    Rehrauer WM; Kowalczykowski SC
    J Biol Chem; 1993 Jan; 268(2):1292-7. PubMed ID: 8419331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structures of Mycobacterium smegmatis RecA and its nucleotide complexes.
    Datta S; Krishna R; Ganesh N; Chandra NR; Muniyappa K; Vijayan M
    J Bacteriol; 2003 Jul; 185(14):4280-4. PubMed ID: 12837805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices.
    Bertucat G; Lavery R; Prévost C
    Biophys J; 1999 Sep; 77(3):1562-76. PubMed ID: 10465767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperative conformational transitions keep RecA filament active during ATPase cycle.
    Kim SH; Ragunathan K; Park J; Joo C; Kim D; Ha T
    J Am Chem Soc; 2014 Oct; 136(42):14796-800. PubMed ID: 25252114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.