These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 17312863)
1. Comparison of hollow-fiber membrane oxygenators with different perfusion modes during normothermic and hypothermic CPB in a simulated neonatal model. Undar A; Ji B; Lukic B; Zapanta CM; Kunselman AR; Reibson JD; Khalapyan T; Baer L; Weiss WJ; Rosenberg G; Myers JL Perfusion; 2006 Nov; 21(6):381-90. PubMed ID: 17312863 [TBL] [Abstract][Full Text] [Related]
2. Quantification of perfusion modes in terms of surplus hemodynamic energy levels in a simulated pediatric CPB model. Undar A; Ji B; Lukic B; Zapanta CM; Kunselman AR; Reibson JD; Weiss WJ; Rosenberg G; Myers JL ASAIO J; 2006; 52(6):712-7. PubMed ID: 17117064 [TBL] [Abstract][Full Text] [Related]
3. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates. Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384 [TBL] [Abstract][Full Text] [Related]
4. Impact of membrane oxygenators on pulsatile versus nonpulsatile perfusion in a neonatal model. Undar A; Koenig KM; Frazier OH; Fraser CD Perfusion; 2000 Mar; 15(2):111-20. PubMed ID: 10789565 [TBL] [Abstract][Full Text] [Related]
5. Impact of oxygenator selection on hemodynamic energy indicators under pulsatile and nonpulsatile flow in a neonatal extracorporeal life support model. Vasavada R; Khan S; Qiu F; Kunselman A; Undar A Artif Organs; 2011 Jun; 35(6):E101-7. PubMed ID: 21623841 [TBL] [Abstract][Full Text] [Related]
6. The type of aortic cannula and membrane oxygenator affect the pulsatile waveform morphology produced by a neonate-infant cardiopulmonary bypass system in vivo. Undar A; Lodge AJ; Daggett CW; Runge TM; Ungerleider RM; Calhoon JH Artif Organs; 1998 Aug; 22(8):681-6. PubMed ID: 9702320 [TBL] [Abstract][Full Text] [Related]
7. In vitro hemodynamic evaluation of a novel pulsatile extracorporeal life support system: impact of perfusion modes and circuit components on energy loss. Wang S; Kunselman AR; Clark JB; Ündar A Artif Organs; 2015 Jan; 39(1):59-66. PubMed ID: 25586773 [TBL] [Abstract][Full Text] [Related]
8. Comparison of perfusion quality in hollow-fiber membrane oxygenators for neonatal extracorporeal life support. Talor J; Yee S; Rider A; Kunselman AR; Guan Y; Undar A Artif Organs; 2010 Apr; 34(4):E110-6. PubMed ID: 20420601 [TBL] [Abstract][Full Text] [Related]
9. In Vitro Comparison of Pediatric Oxygenators With and Without Integrated Arterial Filters in Maintaining Optimal Hemodynamic Stability and Managing Gaseous Microemboli. Moroi M; Force M; Wang S; Kunselman AR; Ündar A Artif Organs; 2018 Apr; 42(4):420-431. PubMed ID: 29377185 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits. Wang S; Rosenthal T; Kunselman AR; Ündar A Artif Organs; 2015 Jan; 39(1):43-52. PubMed ID: 25626579 [TBL] [Abstract][Full Text] [Related]
11. Precise quantification of pulsatility is a necessity for direct comparisons of six different pediatric heart-lung machines in a neonatal CPB model. Undar A; Eichstaedt HC; Masai T; Bigley JE; Kunselman AR ASAIO J; 2005; 51(5):600-3. PubMed ID: 16322724 [TBL] [Abstract][Full Text] [Related]
12. Clinical evaluation of five commercially available adult oxygenators in terms of pressure drop during normothermic and hypothermic cardiopulmonary bypass. Ji B; Wang H; Miao N; Xing J; Liu W; Liu R; Long C Int J Artif Organs; 2010 May; 33(5):310-6. PubMed ID: 20593353 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients. Qiu F; Guan Y; Su X; Kunselman A; Undar A Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035 [TBL] [Abstract][Full Text] [Related]
14. Impact of Pulsatility and Flow Rates on Hemodynamic Energy Transmission in an Adult Extracorporeal Life Support System. Wolfe R; Strother A; Wang S; Kunselman AR; Ündar A Artif Organs; 2015 Jul; 39(7):E127-37. PubMed ID: 25894993 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit. Wang S; Kunselman AR; Ündar A Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381 [TBL] [Abstract][Full Text] [Related]
16. Comparison of pumps and oxygenators with pulsatile and nonpulsatile modes in an infant cardiopulmonary bypass model. Haines NM; Wang S; Kunselman A; Myers JL; Undar A Artif Organs; 2009 Nov; 33(11):993-1001. PubMed ID: 20021473 [TBL] [Abstract][Full Text] [Related]
17. Impact of Distinct Oxygenators on Pulsatile Energy Indicators in an Adult Cardiopulmonary Bypass Model. Griep LM; van Barneveld LJ; Simons AP; Boer C; Weerwind PW Artif Organs; 2017 Feb; 41(2):E15-E25. PubMed ID: 28181301 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of conventional nonpulsatile and novel pulsatile extracorporeal life support systems in a simulated pediatric extracorporeal life support model. Wang S; Evenson A; Chin BJ; Kunselman AR; Ündar A Artif Organs; 2015 Jan; 39(1):E1-9. PubMed ID: 24660832 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops. Guan Y; Palanzo D; Kunselman A; Undar A Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Evaluation of ECG-Synchronized Pulsatile Flow Using the i-cor Diagonal Pump in Neonatal and Pediatric ECLS Systems. Moroi M; Force M; Wang S; Kunselman AR; Ündar A Artif Organs; 2018 Jul; 42(7):E127-E140. PubMed ID: 29473652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]