These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 17312991)
1. Isolation and characterization of resistance and defense gene analogs in cotton (Gossypium barbadense L.). Gao Y; Guo W; Wang L; Zhang T Sci China C Life Sci; 2006 Dec; 49(6):530-42. PubMed ID: 17312991 [TBL] [Abstract][Full Text] [Related]
2. Isolation of TIR and non-TIR NBS--LRR resistance gene analogues and identification of molecular markers linked to a powdery mildew resistance locus in chestnut rose (Rosa roxburghii Tratt). Xu Q; Wen X; Deng X Theor Appl Genet; 2005 Sep; 111(5):819-30. PubMed ID: 16075209 [TBL] [Abstract][Full Text] [Related]
3. Isolation, genetic variation and expression of TIR-NBS-LRR resistance gene analogs from western white pine ( Pinus monticola Dougl. ex. D. Don.). Liu JJ; Ekramoddoullah AK Mol Genet Genomics; 2003 Dec; 270(5):432-41. PubMed ID: 14586641 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide comparative analysis of NBS-encoding genes in four Gossypium species. Xiang L; Liu J; Wu C; Deng Y; Cai C; Zhang X; Cai Y BMC Genomics; 2017 Apr; 18(1):292. PubMed ID: 28403834 [TBL] [Abstract][Full Text] [Related]
5. Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. Miller RN; Bertioli DJ; Baurens FC; Santos CM; Alves PC; Martins NF; Togawa RC; Souza MT; Pappas GJ BMC Plant Biol; 2008 Jan; 8():15. PubMed ID: 18234103 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt. Yang J; Ma Q; Zhang Y; Wang X; Zhang G; Ma Z Gene; 2016 Jan; 575(2 Pt 3):687-94. PubMed ID: 26407869 [TBL] [Abstract][Full Text] [Related]
7. The island cotton NBS-LRR gene GbaNA1 confers resistance to the non-race 1 Verticillium dahliae isolate Vd991. Li NY; Ma XF; Short DPG; Li TG; Zhou L; Gui YJ; Kong ZQ; Zhang DD; Zhang WQ; Li JJ; Subbarao KV; Chen JY; Dai XF Mol Plant Pathol; 2018 Jun; 19(6):1466-1479. PubMed ID: 29052967 [TBL] [Abstract][Full Text] [Related]
8. Cloning, structural features, and expression analysis of resistance gene analogs in tobacco. Gao Y; Xu Z; Jiao F; Yu H; Xiao B; Li Y; Lu X Mol Biol Rep; 2010 Jan; 37(1):345-54. PubMed ID: 19728156 [TBL] [Abstract][Full Text] [Related]
9. Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). Chen G; Pan D; Zhou Y; Lin S; Ke X J Biosci; 2007 Jun; 32(4):713-21. PubMed ID: 17762144 [TBL] [Abstract][Full Text] [Related]
10. Origin, diversity and evolution of NBS-type disease-resistance gene homologues in coffee trees (Coffea L.). Noir S; Combes MC; Anthony F; Lashermes P Mol Genet Genomics; 2001 Jun; 265(4):654-62. PubMed ID: 11459185 [TBL] [Abstract][Full Text] [Related]
11. Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Palomino C; Satovic Z; Cubero JI; Torres AM Genome; 2006 Oct; 49(10):1227-37. PubMed ID: 17213904 [TBL] [Abstract][Full Text] [Related]
12. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Yaish MW; Sáenz de Miera LE; Pérez de la Vega M Genome; 2004 Aug; 47(4):650-9. PubMed ID: 15284869 [TBL] [Abstract][Full Text] [Related]
13. Isolation of Resistance Gene Candidates (RGCs) and characterization of an RGC cluster in cassava. López CE; Zuluaga AP; Cooke R; Delseny M; Tohme J; Verdier V Mol Genet Genomics; 2003 Aug; 269(5):658-71. PubMed ID: 12827500 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide binding site/leucine-rich repeats, Pto-like and receptor-like kinases related to disease resistance in grapevine. Di Gaspero G; Cipriani G Mol Genet Genomics; 2003 Aug; 269(5):612-23. PubMed ID: 12884009 [TBL] [Abstract][Full Text] [Related]
15. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Martínez Zamora MG; Castagnaro AP; Díaz Ricci JC Mol Genet Genomics; 2004 Nov; 272(4):480-7. PubMed ID: 15565466 [TBL] [Abstract][Full Text] [Related]
16. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). He L; Du C; Covaleda L; Xu Z; Robinson AF; Yu JZ; Kohel RJ; Zhang HB Mol Plant Microbe Interact; 2004 Nov; 17(11):1234-41. PubMed ID: 15553248 [TBL] [Abstract][Full Text] [Related]
17. Survey of resistance gene analogs in Solanum caripense, a relative of potato and tomato, and update on R gene genealogy. Trognitz FCh; Trognitz BR Mol Genet Genomics; 2005 Dec; 274(6):595-605. PubMed ID: 16292668 [TBL] [Abstract][Full Text] [Related]
18. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. Li P; Quan X; Jia G; Xiao J; Cloutier S; You FM BMC Genomics; 2016 Nov; 17(1):852. PubMed ID: 27806688 [TBL] [Abstract][Full Text] [Related]
19. Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers. Bozkurt O; Hakki EE; Akkaya MS Biochem Genet; 2007 Jun; 45(5-6):469-86. PubMed ID: 17453333 [TBL] [Abstract][Full Text] [Related]
20. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns. Wan H; Yuan W; Ye Q; Wang R; Ruan M; Li Z; Zhou G; Yao Z; Zhao J; Liu S; Yang Y BMC Genomics; 2012 Sep; 13():502. PubMed ID: 22998579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]