BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17313206)

  • 1. Peptide translocators with engineered dehydration-prone hydrogen bonds.
    Maddipati S; Fernández A
    J Chem Phys; 2007 Feb; 126(6):061102. PubMed ID: 17313206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-up engineering of peptide cell translocators based on environmentally modulated quadrupole switches.
    Fernández A; Crespo A; Maddipati S; Scott R
    ACS Nano; 2008 Jan; 2(1):61-8. PubMed ID: 19206548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
    Wang WZ; Lin T; Sun YC
    J Phys Chem B; 2007 Apr; 111(13):3508-14. PubMed ID: 17388513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism for the effects of trehalose on beta-hairpin folding revealed by molecular dynamics simulation.
    Liu FF; Dong XY; Sun Y
    J Mol Graph Model; 2008 Nov; 27(4):421-9. PubMed ID: 18778961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependence of the contribution of disulfide bonds to beta-hairpin stability.
    Santiveri CM; León E; Rico M; Jiménez MA
    Chemistry; 2008; 14(2):488-99. PubMed ID: 17943702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling efficiency in explicit and implicit membrane environments studied by peptide folding simulations.
    Ulmschneider JP; Ulmschneider MB
    Proteins; 2009 May; 75(3):586-97. PubMed ID: 19003985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
    Lee J; Im W
    J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of the solvation of an alpha-helical transmembrane peptide by DMSO.
    Duarte AM; van Mierlo CP; Hemminga MA
    J Phys Chem B; 2008 Jul; 112(29):8664-71. PubMed ID: 18582096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folding propensity and biological activity of peptides: the effect of a single stereochemical isomerization on the conformational properties of bombinins in aqueous solution.
    Bozzi A; Mangoni ML; Rinaldi AC; Mignogna G; Aschi M
    Biopolymers; 2008 Sep; 89(9):769-78. PubMed ID: 18459169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-exposed backbone loosens the hydration shell of soluble folded proteins.
    Fernández A; Chen J; Crespo A
    J Chem Phys; 2007 Jun; 126(24):245103. PubMed ID: 17614591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding propensity and biological activity of peptides: New insights from conformational properties of a novel peptide derived from Vitreoscilla haemoglobin.
    Bozzi A; Coccia C; Di Giulio A; Rinaldi AC; Amadei A; Mignogna G; Bonamore A; Fais A; Aschi M
    Biopolymers; 2007 Sep; 87(1):85-92. PubMed ID: 17554783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QTAIM study of an alpha-helix hydrogen bond network.
    Lapointe SM; Farrag S; Bohórquez HJ; Boyd RJ
    J Phys Chem B; 2009 Aug; 113(31):10957-64. PubMed ID: 19591510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of peptide--peptide interactions in stabilizing peptide-wrapped single-walled carbon nanotubes: a molecular dynamics study.
    Chiu CC; Dieckmann GR; Nielsen SO
    Biopolymers; 2009; 92(3):156-63. PubMed ID: 19226620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide folding using multiscale coarse-grained models.
    Thorpe IF; Zhou J; Voth GA
    J Phys Chem B; 2008 Oct; 112(41):13079-90. PubMed ID: 18808094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytic potential energy function for the amide-amide and amide-water intermolecular hydrogen bonds in peptides.
    Sun CL; Jiang XN; Wang CS
    J Comput Chem; 2009 Nov; 30(15):2567-75. PubMed ID: 19373825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Keeping dry and crossing membranes.
    Fernández A
    Nat Biotechnol; 2004 Sep; 22(9):1081-4. PubMed ID: 15340471
    [No Abstract]   [Full Text] [Related]  

  • 17. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides.
    Rezai T; Bock JE; Zhou MV; Kalyanaraman C; Lokey RS; Jacobson MP
    J Am Chem Soc; 2006 Nov; 128(43):14073-80. PubMed ID: 17061890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of structure-lipid bilayer permeability relationships for peptide-like small organic molecules.
    Cao Y; Xiang TX; Anderson BD
    Mol Pharm; 2008; 5(3):371-88. PubMed ID: 18355031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation effect on the GSSS peptide conformation in water: infrared, vibrational circular dichroism, and circular dichroism experiments and comparisons with molecular dynamics simulations.
    Lee KK; Joo C; Yang S; Han H; Cho M
    J Chem Phys; 2007 Jun; 126(23):235102. PubMed ID: 17600445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation on the intramolecular 10-membered ring N-H...O=C hydrogen-bonding energies in glycine and alanine peptides.
    Zhang Y; Wang CS
    J Comput Chem; 2009 Jun; 30(8):1251-60. PubMed ID: 18991303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.