These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 17313208)

  • 1. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.
    Ilias M; Saue T
    J Chem Phys; 2007 Feb; 126(6):064102. PubMed ID: 17313208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic shielding constants calculated by the infinite-order Douglas-Kroll-Hess method with electron-electron relativistic corrections.
    Seino J; Hada M
    J Chem Phys; 2010 May; 132(17):174105. PubMed ID: 20459154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-component relativistic methods for the heaviest elements.
    Kedziera D; Barysz M
    J Chem Phys; 2004 Oct; 121(14):6719-27. PubMed ID: 15473727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order.
    Reiher M; Wolf A
    J Chem Phys; 2004 Dec; 121(22):10945-56. PubMed ID: 15634044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the spin separation of algebraic two-component relativistic Hamiltonians.
    Li Z; Xiao Y; Liu W
    J Chem Phys; 2012 Oct; 137(15):154114. PubMed ID: 23083155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.
    Mitin AV; van Wüllen C
    J Chem Phys; 2006 Feb; 124(6):64305. PubMed ID: 16483205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations.
    Neese F; Wolf A; Fleig T; Reiher M; Hess BA
    J Chem Phys; 2005 May; 122(20):204107. PubMed ID: 15945713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convergence of approximate two-component Hamiltonians: how far is the Dirac limit.
    Kedziera D
    J Chem Phys; 2005 Aug; 123(7):074109. PubMed ID: 16229561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd.
    Peterson KA; Figgen D; Dolg M; Stoll H
    J Chem Phys; 2007 Mar; 126(12):124101. PubMed ID: 17411102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M
    J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Picture change error correction of radon atom electron density.
    Bučinský L; Biskupič S; Jayatilaka D
    J Chem Phys; 2010 Nov; 133(17):174125. PubMed ID: 21054024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact decoupling of the Dirac Hamiltonian. III. Molecular properties.
    Wolf A; Reiher M
    J Chem Phys; 2006 Feb; 124(6):64102. PubMed ID: 16483191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic electronic structure theory.
    Nakajima T; Yanai T; Hirao K
    J Comput Chem; 2002 Jun; 23(8):847-60. PubMed ID: 12012361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids.
    Romaniello P; de Boeij PL
    J Chem Phys; 2007 Nov; 127(17):174111. PubMed ID: 17994811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order.
    Wolf A; Reiher M
    J Chem Phys; 2006 Feb; 124(6):64103. PubMed ID: 16483192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connection between the regular approximation and the normalized elimination of the small component in relativistic quantum theory.
    Filatov M; Cremer D
    J Chem Phys; 2005 Feb; 122(6):064104. PubMed ID: 15740364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local unitary transformation method for large-scale two-component relativistic calculations. II. Extension to two-electron Coulomb interaction.
    Seino J; Nakai H
    J Chem Phys; 2012 Oct; 137(14):144101. PubMed ID: 23061833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules.
    Thyssen J; Fleig T; Jensen HJ
    J Chem Phys; 2008 Jul; 129(3):034109. PubMed ID: 18647018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relativistic two-component calculations of electronic g-tensors that include spin polarization.
    Malkin I; Malkina OL; Malkin VG; Kaupp M
    J Chem Phys; 2005 Dec; 123(24):244103. PubMed ID: 16396530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gauge-independent zeroth-order regular approximation to the exact relativistic Hamiltonian--formulation and applications.
    Filatov M; Cremer D
    J Chem Phys; 2005 Jan; 122(4):44104. PubMed ID: 15740232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.