BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 1731330)

  • 1. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins.
    Dang CV; Dolde C; Gillison ML; Kato GJ
    Proc Natl Acad Sci U S A; 1992 Jan; 89(2):599-602. PubMed ID: 1731330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members.
    Bendall AJ; Molloy PL
    Nucleic Acids Res; 1994 Jul; 22(14):2801-10. PubMed ID: 8052536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy.
    Cai M; Davis RW
    Cell; 1990 May; 61(3):437-46. PubMed ID: 2185892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.
    Stoyan T; Gloeckner G; Diekmann S; Carbon J
    Mol Cell Biol; 2001 Aug; 21(15):4875-88. PubMed ID: 11438645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-myc and the yeast transcription factor PHO4 share a common CACGTG-binding motif.
    Fisher F; Jayaraman PS; Goding CR
    Oncogene; 1991 Jul; 6(7):1099-104. PubMed ID: 1861859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA binding by N- and L-Myc proteins.
    Ma A; Moroy T; Collum R; Weintraub H; Alt FW; Blackwell TK
    Oncogene; 1993 Apr; 8(4):1093-8. PubMed ID: 8455937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High affinity DNA-binding Myc analogs: recognition by an alpha helix.
    Fisher DE; Parent LA; Sharp PA
    Cell; 1993 Feb; 72(3):467-76. PubMed ID: 8431949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of myc proteins to canonical and noncanonical DNA sequences.
    Blackwell TK; Huang J; Ma A; Kretzner L; Alt FW; Eisenman RN; Weintraub H
    Mol Cell Biol; 1993 Sep; 13(9):5216-24. PubMed ID: 8395000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding.
    Kuras L; Barbey R; Thomas D
    EMBO J; 1997 May; 16(9):2441-51. PubMed ID: 9171357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of basic-helix-loop-helix transcription factors in Sertoli cell differentiation: identification of an E-box response element in the transferrin promoter.
    Chaudhary J; Cupp AS; Skinner MK
    Endocrinology; 1997 Feb; 138(2):667-75. PubMed ID: 9003001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif.
    Fisher F; Goding CR
    EMBO J; 1992 Nov; 11(11):4103-9. PubMed ID: 1327757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sin3 corepressor function in Myc-induced transcription and transformation.
    Harper SE; Qiu Y; Sharp PA
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8536-40. PubMed ID: 8710905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation.
    Kuras L; Thomas D
    FEBS Lett; 1995 Jun; 367(1):15-8. PubMed ID: 7601277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A heteromeric complex containing the centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, mediates the transcription activation of yeast sulfur metabolism.
    Kuras L; Cherest H; Surdin-Kerjan Y; Thomas D
    EMBO J; 1996 May; 15(10):2519-29. PubMed ID: 8665859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myc/Max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove.
    Fisher DE; Parent LA; Sharp PA
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11779-83. PubMed ID: 1465398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity.
    Crouch DH; Fisher F; Clark W; Jayaraman PS; Goding CR; Gillespie DA
    Oncogene; 1993 Jul; 8(7):1849-55. PubMed ID: 8510929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cysteine residue in helixII of the bHLH domain is essential for homodimerization of the yeast transcription factor Pho4p.
    Shao D; Creasy CL; Bergman LW
    Nucleic Acids Res; 1998 Feb; 26(3):710-4. PubMed ID: 9443961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max.
    Amati B; Dalton S; Brooks MW; Littlewood TD; Evan GI; Land H
    Nature; 1992 Oct; 359(6394):423-6. PubMed ID: 1406955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The centromere and promoter factor 1 of yeast contains a dimerisation domain located carboxy-terminal to the bHLH domain.
    Dowell SJ; Tsang JS; Mellor J
    Nucleic Acids Res; 1992 Aug; 20(16):4229-36. PubMed ID: 1508716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.