These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 17313572)

  • 1. Synchronous high-voltage spindles in the cortex-basal ganglia network of awake and unrestrained rats.
    Dejean C; Gross CE; Bioulac B; Boraud T
    Eur J Neurosci; 2007 Feb; 25(3):772-84. PubMed ID: 17313572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat.
    Dejean C; Gross CE; Bioulac B; Boraud T
    J Neurophysiol; 2008 Jul; 100(1):385-96. PubMed ID: 18497362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.
    Ge S; Yang C; Li M; Li J; Chang X; Fu J; Chen L; Chang C; Wang X; Zhu J; Gao G
    Brain Res; 2012 Jul; 1465():66-79. PubMed ID: 22613347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat.
    Magill PJ; Sharott A; Bolam JP; Brown P
    J Neurophysiol; 2004 Oct; 92(4):2122-36. PubMed ID: 15175372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent spike-wave oscillations in the cortex and subthalamic nucleus of the freely moving rat.
    Magill PJ; Sharott A; Harnack D; Kupsch A; Meissner W; Brown P
    Neuroscience; 2005; 132(3):659-64. PubMed ID: 15837127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats.
    Dejean C; Nadjar A; Le Moine C; Bioulac B; Gross CE; Boraud T
    Neurobiol Dis; 2012 May; 46(2):402-13. PubMed ID: 22353564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice.
    Bosch C; Mailly P; Degos B; Deniau JM; Venance L
    Neuroscience; 2012 Jul; 215():31-41. PubMed ID: 22537846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease.
    Ibáñez-Sandoval O; Carrillo-Reid L; Galarraga E; Tapia D; Mendoza E; Gomora JC; Aceves J; Bargas J
    J Neurophysiol; 2007 Oct; 98(4):2311-23. PubMed ID: 17715194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Striatal dysfunction increases basal ganglia output during motor cortex activation in parkinsonian rats.
    Belluscio MA; Riquelme LA; Murer MG
    Eur J Neurosci; 2007 May; 25(9):2791-804. PubMed ID: 17561844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a direct subthalamo-cortical loop circuit in the rat.
    Degos B; Deniau JM; Le Cam J; Mailly P; Maurice N
    Eur J Neurosci; 2008 May; 27(10):2599-610. PubMed ID: 18547246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pars reticulata of the substantia nigra: a window to basal ganglia output.
    Deniau JM; Mailly P; Maurice N; Charpier S
    Prog Brain Res; 2007; 160():151-72. PubMed ID: 17499113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat.
    Sharott A; Magill PJ; Bolam JP; Brown P
    J Physiol; 2005 Feb; 562(Pt 3):951-63. PubMed ID: 15550466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for asymmetric intra substantia nigra functional connectivity-application to basal ganglia processing.
    Doron O; Goelman G
    Neuroimage; 2010 Feb; 49(4):2940-6. PubMed ID: 19944765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketamine-induced oscillations in the motor circuit of the rat basal ganglia.
    Nicolás MJ; López-Azcárate J; Valencia M; Alegre M; Pérez-Alcázar M; Iriarte J; Artieda J
    PLoS One; 2011; 6(7):e21814. PubMed ID: 21829443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.
    Baker SN; Pinches EM; Lemon RN
    J Neurophysiol; 2003 Apr; 89(4):1941-53. PubMed ID: 12686573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.
    Brazhnik E; Cruz AV; Avila I; Wahba MI; Novikov N; Ilieva NM; McCoy AJ; Gerber C; Walters JR
    J Neurosci; 2012 Jun; 32(23):7869-80. PubMed ID: 22674263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal ganglia--hippocampal interactions support the role of the hippocampal formation in sensorimotor integration.
    Hallworth NE; Bland BH
    Exp Neurol; 2004 Aug; 188(2):430-43. PubMed ID: 15246842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neurophysiological correlates of motor tics following focal striatal disinhibition.
    McCairn KW; Bronfeld M; Belelovsky K; Bar-Gad I
    Brain; 2009 Aug; 132(Pt 8):2125-38. PubMed ID: 19506070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra.
    Cauli O; Llansola M; Erceg S; Felipo V
    J Hepatol; 2006 Nov; 45(5):654-61. PubMed ID: 16982110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal ganglia as a sensory gating devise for motor control.
    Kaji R
    J Med Invest; 2001 Aug; 48(3-4):142-6. PubMed ID: 11694953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.