These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

616 related articles for article (PubMed ID: 17313573)

  • 1. Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus.
    Niewoehner B; Single FN; Hvalby Ø; Jensen V; Meyer zum Alten Borgloh S; Seeburg PH; Rawlins JN; Sprengel R; Bannerman DM
    Eur J Neurosci; 2007 Feb; 25(3):837-46. PubMed ID: 17313573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term potentiation in the hippocampal CA1 area and dentate gyrus plays different roles in spatial learning.
    Okada T; Yamada N; Tsuzuki K; Horikawa HP; Tanaka K; Ozawa S
    Eur J Neurosci; 2003 Jan; 17(2):341-9. PubMed ID: 12542671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory.
    Tsien JZ; Huerta PT; Tonegawa S
    Cell; 1996 Dec; 87(7):1327-38. PubMed ID: 8980238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A specific role for group II metabotropic glutamate receptors in hippocampal long-term depression and spatial memory.
    Altinbilek B; Manahan-Vaughan D
    Neuroscience; 2009 Jan; 158(1):149-58. PubMed ID: 18722513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial learning without NMDA receptor-dependent long-term potentiation.
    Saucier D; Cain DP
    Nature; 1995 Nov; 378(6553):186-9. PubMed ID: 7477321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome.
    Morice E; Andreae LC; Cooke SF; Vanes L; Fisher EM; Tybulewicz VL; Bliss TV
    Learn Mem; 2008 Jul; 15(7):492-500. PubMed ID: 18626093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus.
    Paupard MC; Friedman LK; Zukin RS
    Neuroscience; 1997 Jul; 79(2):399-409. PubMed ID: 9200724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal subfield-specific Homer1a expression is triggered by learning-facilitated long-term potentiation and long-term depression at medial perforant path synapses.
    Hoang TH; Böge J; Manahan-Vaughan D
    Hippocampus; 2021 Aug; 31(8):897-915. PubMed ID: 33964041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective synaptic transmission and structure in the dentate gyrus and selective fear memory impairment in the Rsk2 mutant mouse model of Coffin-Lowry syndrome.
    Morice E; Farley S; Poirier R; Dallerac G; Chagneau C; Pannetier S; Hanauer A; Davis S; Vaillend C; Laroche S
    Neurobiol Dis; 2013 Oct; 58():156-68. PubMed ID: 23742761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hippocampal CA1-region-restricted knockout of NMDAR1 gene disrupts synaptic plasticity, place fields, and spatial learning.
    Tonegawa S; Tsien JZ; McHugh TJ; Huerta P; Blum KI; Wilson MA
    Cold Spring Harb Symp Quant Biol; 1996; 61():225-38. PubMed ID: 9246451
    [No Abstract]   [Full Text] [Related]  

  • 11. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5.
    Steele RJ; Morris RG
    Hippocampus; 1999; 9(2):118-36. PubMed ID: 10226773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired in vivo synaptic plasticity in dentate gyrus and spatial memory in juvenile rats induced by prenatal morphine exposure.
    Niu L; Cao B; Zhu H; Mei B; Wang M; Yang Y; Zhou Y
    Hippocampus; 2009 Jul; 19(7):649-57. PubMed ID: 19115391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GluN2A-/- Mice Lack Bidirectional Synaptic Plasticity in the Dentate Gyrus and Perform Poorly on Spatial Pattern Separation Tasks.
    Kannangara TS; Eadie BD; Bostrom CA; Morch K; Brocardo PS; Christie BR
    Cereb Cortex; 2015 Aug; 25(8):2102-13. PubMed ID: 24554729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory.
    Lee I; Kesner RP
    Nat Neurosci; 2002 Feb; 5(2):162-8. PubMed ID: 11780144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA receptor subunit NR2A is required for rapidly acquired spatial working memory but not incremental spatial reference memory.
    Bannerman DM; Niewoehner B; Lyon L; Romberg C; Schmitt WB; Taylor A; Sanderson DJ; Cottam J; Sprengel R; Seeburg PH; Köhr G; Rawlins JN
    J Neurosci; 2008 Apr; 28(14):3623-30. PubMed ID: 18385321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological antagonism of metabotropic glutamate receptor 1 regulates long-term potentiation and spatial reference memory in the dentate gyrus of freely moving rats via N-methyl-D-aspartate and metabotropic glutamate receptor-dependent mechanisms.
    Naie K; Manahan-Vaughan D
    Eur J Neurosci; 2005 Jan; 21(2):411-21. PubMed ID: 15673440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus.
    Snyder JS; Kee N; Wojtowicz JM
    J Neurophysiol; 2001 Jun; 85(6):2423-31. PubMed ID: 11387388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo.
    Do VH; Martinez CO; Martinez JL; Derrick BE
    J Neurophysiol; 2002 Feb; 87(2):669-78. PubMed ID: 11826036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus.
    Hernández-Rabaza V; Barcia JA; Llorens-Martín M; Trejo JL; Canales JJ
    Brain Res Bull; 2007 May; 72(4-6):315-23. PubMed ID: 17452292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. δGABAA Receptors Are Necessary for Synaptic Plasticity in the Hippocampus: Implications for Memory Behavior.
    Whissell PD; Avramescu S; Wang DS; Orser BA
    Anesth Analg; 2016 Nov; 123(5):1247-1252. PubMed ID: 27464975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.