BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17314104)

  • 1. A novel branched-chain amino acid metabolon. Protein-protein interactions in a supramolecular complex.
    Islam MM; Wallin R; Wynn RM; Conway M; Fujii H; Mobley JA; Chuang DT; Hutson SM
    J Biol Chem; 2007 Apr; 282(16):11893-903. PubMed ID: 17314104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branched-chain amino acid metabolon: interaction of glutamate dehydrogenase with the mitochondrial branched-chain aminotransferase (BCATm).
    Islam MM; Nautiyal M; Wynn RM; Mobley JA; Chuang DT; Hutson SM
    J Biol Chem; 2010 Jan; 285(1):265-76. PubMed ID: 19858196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent Induction of Branched-Chain Aminotransferases and Phosphorylation of Branched Chain Keto-Acid Dehydrogenase Is a Potential Mechanism Coupling Branched-Chain Keto-Acid-Mediated-Astrocyte Activation to Branched-Chain Amino Acid Depletion-Mediated Cognitive Deficit after Traumatic Brain Injury.
    Xing G; Ren M; Verma A
    J Neurotrauma; 2018 Oct; 35(20):2482-2494. PubMed ID: 29764289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of key enzymes of branched-chain amino acid metabolism in glial and neuronal cells in culture.
    Bixel M; Shimomura Y; Hutson S; Hamprecht B
    J Histochem Cytochem; 2001 Mar; 49(3):407-18. PubMed ID: 11181743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human mitochondrial branched chain aminotransferase isozyme: structural role of the CXXC center in catalysis.
    Yennawar NH; Islam MM; Conway M; Wallin R; Hutson SM
    J Biol Chem; 2006 Dec; 281(51):39660-71. PubMed ID: 17050531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular model of human branched-chain amino acid metabolism.
    Suryawan A; Hawes JW; Harris RA; Shimomura Y; Jenkins AE; Hutson SM
    Am J Clin Nutr; 1998 Jul; 68(1):72-81. PubMed ID: 9665099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-talk between thiamin diphosphate binding and phosphorylation loop conformation in human branched-chain alpha-keto acid decarboxylase/dehydrogenase.
    Li J; Wynn RM; Machius M; Chuang JL; Karthikeyan S; Tomchick DR; Chuang DT
    J Biol Chem; 2004 Jul; 279(31):32968-78. PubMed ID: 15166214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between glutamate dehydrogenase (GDH) and L-leucine catabolic enzymes: intersecting metabolic pathways.
    Hutson SM; Islam MM; Zaganas I
    Neurochem Int; 2011 Sep; 59(4):518-24. PubMed ID: 21621574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural determinants for branched-chain aminotransferase isozyme-specific inhibition by the anticonvulsant drug gabapentin.
    Goto M; Miyahara I; Hirotsu K; Conway M; Yennawar N; Islam MM; Hutson SM
    J Biol Chem; 2005 Nov; 280(44):37246-56. PubMed ID: 16141215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the regulation of the mitochondrial alpha-ketoacid dehydrogenase complexes and their kinases.
    Harris RA; Hawes JW; Popov KM; Zhao Y; Shimomura Y; Sato J; Jaskiewicz J; Hurley TD
    Adv Enzyme Regul; 1997; 37():271-93. PubMed ID: 9381974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism.
    She P; Van Horn C; Reid T; Hutson SM; Cooney RN; Lynch CJ
    Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1552-63. PubMed ID: 17925455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells.
    Lu G; Sun H; She P; Youn JY; Warburton S; Ping P; Vondriska TM; Cai H; Lynch CJ; Wang Y
    J Clin Invest; 2009 Jun; 119(6):1678-87. PubMed ID: 19411760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched-chain amino acid catabolism: unique segregation of pathway enzymes in organ systems and peripheral nerves.
    Sweatt AJ; Wood M; Suryawan A; Wallin R; Willingham MC; Hutson SM
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E64-76. PubMed ID: 12965870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme.
    Conway ME; Poole LB; Hutson SM
    Biochemistry; 2004 Jun; 43(23):7356-64. PubMed ID: 15182179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of expression of branched-chain aminotransferase and alpha-keto acid dehydrogenase in rat tissues during lactation.
    DeSantiago S; Torres N; Hutson S; Tovar AR
    Adv Exp Med Biol; 2001; 501():93-9. PubMed ID: 11787736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High branched-chain alpha-keto acid intake, branched-chain alpha-keto acid dehydrogenase activity, and plasma and brain amino acid and plasma keto acid concentrations in rats.
    Crowell PL; Block KP; Repa JJ; Torres N; Nawabi MD; Buse MG; Harper AE
    Am J Clin Nutr; 1990 Aug; 52(2):313-9. PubMed ID: 2375298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of branched-chain amino acid metabolism in the lactating rat.
    DeSantiago S; Torres N; Suryawan A; Tovar AR; Hutson SM
    J Nutr; 1998 Jul; 128(7):1165-71. PubMed ID: 9649601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase.
    Conway ME; Yennawar N; Wallin R; Poole LB; Hutson SM
    Biochemistry; 2002 Jul; 41(29):9070-8. PubMed ID: 12119021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human mitochondrial branched chain aminotransferase: structural basis for substrate specificity and role of redox active cysteines.
    Conway ME; Yennawar N; Wallin R; Poole LB; Hutson SM
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):61-5. PubMed ID: 12686109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of glycine oxidation by pyruvate, alpha-ketoglutarate, and branched-chain alpha-keto acids in rat liver mitochondria: presence of interaction between the glycine cleavage system and alpha-keto acid dehydrogenase complexes.
    Kochi H; Seino H; Ono K
    Arch Biochem Biophys; 1986 Sep; 249(2):263-72. PubMed ID: 3753002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.