BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1475 related articles for article (PubMed ID: 17314203)

  • 1. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein.
    Wang X; Messing A; David S
    Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MMP-related gelatinase activity is strongly induced in scar tissue of injured adult spinal cord and forms pathways for ingrowing neurites.
    Duchossoy Y; Horvat JC; Stettler O
    Mol Cell Neurosci; 2001 Jun; 17(6):945-56. PubMed ID: 11414785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord.
    Buss A; Brook GA; Kakulas B; Martin D; Franzen R; Schoenen J; Noth J; Schmitt AB
    Brain; 2004 Jan; 127(Pt 1):34-44. PubMed ID: 14534158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar.
    Liesi P; Kauppila T
    Exp Neurol; 2002 Jan; 173(1):31-45. PubMed ID: 11771937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axon regeneration through scars and into sites of chronic spinal cord injury.
    Lu P; Jones LL; Tuszynski MH
    Exp Neurol; 2007 Jan; 203(1):8-21. PubMed ID: 17014846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration.
    Weidner N; Grill RJ; Tuszynski MH
    Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous regeneration of the corticospinal tract after transection in young rats: collagen type IV deposition and astrocytic scar in the lesion site are not the cause but the effect of failure of regeneration.
    Iseda T; Nishio T; Kawaguchi S; Kawasaki T; Wakisaka S
    J Comp Neurol; 2003 Sep; 464(3):343-55. PubMed ID: 12900928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages.
    Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M
    Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord.
    Camand E; Morel MP; Faissner A; Sotelo C; Dusart I
    Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord.
    Scott AL; Ramer MS
    Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat.
    Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T
    Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules.
    Fitch MT; Silver J
    Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions.
    Alonso G; Privat A
    J Neurosci Res; 1993 Apr; 34(5):523-38. PubMed ID: 8478987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional regulation of scar gene expression in primary astrocytes.
    Gris P; Tighe A; Levin D; Sharma R; Brown A
    Glia; 2007 Aug; 55(11):1145-55. PubMed ID: 17597120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord.
    King VR; Phillips JB; Hunt-Grubbe H; Brown R; Priestley JV
    Biomaterials; 2006 Jan; 27(3):485-96. PubMed ID: 16102813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The collagenous lesion scar--an obstacle for axonal regeneration in brain and spinal cord injury.
    Hermanns S; Klapka N; Müller HW
    Restor Neurol Neurosci; 2001; 19(1-2):139-48. PubMed ID: 12082234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous and augmented growth of axons in the primate spinal cord: effects of local injury and nerve growth factor-secreting cell grafts.
    Tuszynski MH; Grill R; Jones LL; McKay HM; Blesch A
    J Comp Neurol; 2002 Jul; 449(1):88-101. PubMed ID: 12115695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 74.