These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1390 related articles for article (PubMed ID: 17314203)
1. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [TBL] [Abstract][Full Text] [Related]
2. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Wang X; Messing A; David S Exp Neurol; 1997 Dec; 148(2):568-76. PubMed ID: 9417833 [TBL] [Abstract][Full Text] [Related]
3. MMP-related gelatinase activity is strongly induced in scar tissue of injured adult spinal cord and forms pathways for ingrowing neurites. Duchossoy Y; Horvat JC; Stettler O Mol Cell Neurosci; 2001 Jun; 17(6):945-56. PubMed ID: 11414785 [TBL] [Abstract][Full Text] [Related]
4. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Buss A; Brook GA; Kakulas B; Martin D; Franzen R; Schoenen J; Noth J; Schmitt AB Brain; 2004 Jan; 127(Pt 1):34-44. PubMed ID: 14534158 [TBL] [Abstract][Full Text] [Related]
5. Induction of type IV collagen and other basement-membrane-associated proteins after spinal cord injury of the adult rat may participate in formation of the glial scar. Liesi P; Kauppila T Exp Neurol; 2002 Jan; 173(1):31-45. PubMed ID: 11771937 [TBL] [Abstract][Full Text] [Related]
6. Axon regeneration through scars and into sites of chronic spinal cord injury. Lu P; Jones LL; Tuszynski MH Exp Neurol; 2007 Jan; 203(1):8-21. PubMed ID: 17014846 [TBL] [Abstract][Full Text] [Related]
7. Elimination of basal lamina and the collagen "scar" after spinal cord injury fails to augment corticospinal tract regeneration. Weidner N; Grill RJ; Tuszynski MH Exp Neurol; 1999 Nov; 160(1):40-50. PubMed ID: 10630189 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous regeneration of the corticospinal tract after transection in young rats: collagen type IV deposition and astrocytic scar in the lesion site are not the cause but the effect of failure of regeneration. Iseda T; Nishio T; Kawaguchi S; Kawasaki T; Wakisaka S J Comp Neurol; 2003 Sep; 464(3):343-55. PubMed ID: 12900928 [TBL] [Abstract][Full Text] [Related]
9. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages. Frisén J; Haegerstrand A; Fried K; Piehl F; Cullheim S; Risling M Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733 [TBL] [Abstract][Full Text] [Related]
10. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Camand E; Morel MP; Faissner A; Sotelo C; Dusart I Eur J Neurosci; 2004 Sep; 20(5):1161-76. PubMed ID: 15341588 [TBL] [Abstract][Full Text] [Related]
11. Schwann cell p75NTR prevents spontaneous sensory reinnervation of the adult spinal cord. Scott AL; Ramer MS Brain; 2010 Feb; 133(Pt 2):421-32. PubMed ID: 20047901 [TBL] [Abstract][Full Text] [Related]
12. Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Ide C; Nakai Y; Nakano N; Seo TB; Yamada Y; Endo K; Noda T; Saito F; Suzuki Y; Fukushima M; Nakatani T Brain Res; 2010 May; 1332():32-47. PubMed ID: 20307513 [TBL] [Abstract][Full Text] [Related]
13. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Fitch MT; Silver J Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835 [TBL] [Abstract][Full Text] [Related]
14. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016 [TBL] [Abstract][Full Text] [Related]
15. Reactive astrocytes involved in the formation of lesional scars differ in the mediobasal hypothalamus and in other forebrain regions. Alonso G; Privat A J Neurosci Res; 1993 Apr; 34(5):523-38. PubMed ID: 8478987 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional regulation of scar gene expression in primary astrocytes. Gris P; Tighe A; Levin D; Sharma R; Brown A Glia; 2007 Aug; 55(11):1145-55. PubMed ID: 17597120 [TBL] [Abstract][Full Text] [Related]
17. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC; Dalton PD; Shoichet MS; Tator CH Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [TBL] [Abstract][Full Text] [Related]
18. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. King VR; Phillips JB; Hunt-Grubbe H; Brown R; Priestley JV Biomaterials; 2006 Jan; 27(3):485-96. PubMed ID: 16102813 [TBL] [Abstract][Full Text] [Related]
19. The collagenous lesion scar--an obstacle for axonal regeneration in brain and spinal cord injury. Hermanns S; Klapka N; Müller HW Restor Neurol Neurosci; 2001; 19(1-2):139-48. PubMed ID: 12082234 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous and augmented growth of axons in the primate spinal cord: effects of local injury and nerve growth factor-secreting cell grafts. Tuszynski MH; Grill R; Jones LL; McKay HM; Blesch A J Comp Neurol; 2002 Jul; 449(1):88-101. PubMed ID: 12115695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]