These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 17315016)

  • 1. Tiling-resolution array-CGH reveals the pattern of DNA copy number alterations in acute lymphoblastic leukemia with 21q amplification: the result of telomere dysfunction and breakage/fusion/breakage cycles?
    Kuchinskaya E; Nordgren A; Heyman M; Schoumans J; Corcoran M; Staaf J; Borg A; Söderhäll S; Grandér D; Nordenskjöld M; Blennow E
    Leukemia; 2007 Jun; 21(6):1327-30. PubMed ID: 17315016
    [No Abstract]   [Full Text] [Related]  

  • 2. Array-CGH reveals hidden gene dose changes in children with acute lymphoblastic leukaemia and a normal or failed karyotype by G-banding.
    Kuchinskaya E; Heyman M; Nordgren A; Schoumans J; Staaf J; Borg A; Söderhäll S; Grandér D; Nordenskjöld M; Blennow E
    Br J Haematol; 2008 Mar; 140(5):572-7. PubMed ID: 18275435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of band q22 of chromosome 21, including AML1, in older children with acute lymphoblastic leukemia: an emerging molecular cytogenetic subgroup.
    Soulier J; Trakhtenbrot L; Najfeld V; Lipton JM; Mathew S; Avet-Loiseau H; De Braekeleer M; Salem S; Baruchel A; Raimondi SC; Raynaud SD
    Leukemia; 2003 Aug; 17(8):1679-82. PubMed ID: 12886264
    [No Abstract]   [Full Text] [Related]  

  • 4. DNA copy number changes in childhood acute lymphoblastic leukemia.
    Larramendy ML; Huhta T; Heinonen K; Vettenranta K; Mahlamäki E; Riikonen P; Saarinen-Pihkala UM; Knuutila S
    Haematologica; 1998 Oct; 83(10):890-5. PubMed ID: 9830797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copy number alterations in childhood acute lymphoblastic leukemia and their association with minimal residual disease.
    Steinemann D; Cario G; Stanulla M; Karawajew L; Tauscher M; Weigmann A; Göhring G; Ludwig WD; Harbott J; Radlwimmer B; Bartram C; Lichter P; Schrappe M; Schlegelberger B
    Genes Chromosomes Cancer; 2008 Jun; 47(6):471-80. PubMed ID: 18311775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AML1 gene amplification: a novel finding in childhood acute lymphoblastic leukemia.
    Niini T; Kanerva J; Vettenranta K; Saarinen-Pihkala UM; Knuutila S
    Haematologica; 2000 Apr; 85(4):362-6. PubMed ID: 10756360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromosomal changes detected by fluorescence in situ hybridization in patients with acute lymphoblastic leukemia.
    Zhang L; Parkhurst JB; Kern WF; Scott KV; Niccum D; Mulvihill JJ; Li S
    Chin Med J (Engl); 2003 Sep; 116(9):1298-303. PubMed ID: 14527352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a breakpoint cluster reveals insight into the mechanism of intrachromosomal amplification in a lymphoid malignancy.
    Sinclair PB; Parker H; An Q; Rand V; Ensor H; Harrison CJ; Strefford JC
    Hum Mol Genet; 2011 Jul; 20(13):2591-602. PubMed ID: 21487021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma.
    Lim G; Karaskova J; Beheshti B; Vukovic B; Bayani J; Selvarajah S; Watson SK; Lam WL; Zielenska M; Squire JA
    Genes Chromosomes Cancer; 2005 Apr; 42(4):392-403. PubMed ID: 15660435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence in situ hybridization study of TEL/AML1 fusion and other abnormalities involving TEL and AML1 genes. Correlation with cytogenetic findings and prognostic value in children with acute lymphocytic leukemia.
    Martínez-Ramírez A; Urioste M; Contra T; Cantalejo A; Tavares A; Portero JA; López-Ibor B; Bernacer M; Soto C; Cigudosa JC; Benítez J
    Haematologica; 2001 Dec; 86(12):1245-53. PubMed ID: 11726315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. hTERT promoter methylation and telomere length in childhood acute lymphoblastic leukemia: associations with immunophenotype and cytogenetic subgroup.
    Borssén M; Cullman I; Norén-Nyström U; Sundström C; Porwit A; Forestier E; Roos G
    Exp Hematol; 2011 Dec; 39(12):1144-51. PubMed ID: 21914494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of 14q24.1 approximately q24.3 in a patient with acute lymphoblastic leukemia: a hidden chromosomal anomaly detected by array-based comparative genomic hybridization.
    Xu W; Lu X; Kim Y; Luo Y; Martin M; Mulvihill JJ; Li S
    Cancer Genet Cytogenet; 2008 Aug; 185(1):43-6. PubMed ID: 18656693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.
    Kloth JN; Oosting J; van Wezel T; Szuhai K; Knijnenburg J; Gorter A; Kenter GG; Fleuren GJ; Jordanova ES
    BMC Genomics; 2007 Feb; 8():53. PubMed ID: 17311676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal residual disease values discriminate between low and high relapse risk in children with B-cell precursor acute lymphoblastic leukemia and an intrachromosomal amplification of chromosome 21: the Austrian and German acute lymphoblastic leukemia Berlin-Frankfurt-Munster (ALL-BFM) trials.
    Attarbaschi A; Mann G; Panzer-Grümayer R; Röttgers S; Steiner M; König M; Csinady E; Dworzak MN; Seidel M; Janousek D; Möricke A; Reichelt C; Harbott J; Schrappe M; Gadner H; Haas OA
    J Clin Oncol; 2008 Jun; 26(18):3046-50. PubMed ID: 18565891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution genomic profiling of pediatric lymphoblastic lymphomas reveals subtle differences with pediatric acute lymphoblastic leukemias in the B-lineage.
    Schraders M; van Reijmersdal SV; Kamping EJ; van Krieken JH; van Kessel AG; Groenen PJ; Hoogerbrugge PM; Kuiper RP
    Cancer Genet Cytogenet; 2009 May; 191(1):27-33. PubMed ID: 19389505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrachromosomal amplification of chromosome 21 (iAMP21) may arise from a breakage-fusion-bridge cycle.
    Robinson HM; Harrison CJ; Moorman AV; Chudoba I; Strefford JC
    Genes Chromosomes Cancer; 2007 Apr; 46(4):318-26. PubMed ID: 17243167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complicated copy number alterations in chromosome 7 of a lung cancer cell line is explained by a model based on repeated breakage-fusion-bridge cycles.
    Kitada K; Yamasaki T
    Cancer Genet Cytogenet; 2008 Aug; 185(1):11-9. PubMed ID: 18656688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia.
    Li Y; Schwab C; Ryan S; Papaemmanuil E; Robinson HM; Jacobs P; Moorman AV; Dyer S; Borrow J; Griffiths M; Heerema NA; Carroll AJ; Talley P; Bown N; Telford N; Ross FM; Gaunt L; McNally RJQ; Young BD; Sinclair P; Rand V; Teixeira MR; Joseph O; Robinson B; Maddison M; Dastugue N; Vandenberghe P; Stephens PJ; Cheng J; Van Loo P; Stratton MR; Campbell PJ; Harrison CJ
    Nature; 2014 Apr; 508(7494):98-102. PubMed ID: 24670643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute lymphoblastic leukemias with normal karyotypes are not without genomic aberrations.
    Usvasalo A; Räty R; Harila-Saari A; Koistinen P; Savolainen ER; Vettenranta K; Knuutila S; Elonen E; Saarinen-Pihkala UM
    Cancer Genet Cytogenet; 2009 Jul; 192(1):10-7. PubMed ID: 19480931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Detection of aberrant chromosomes in acute lymphoblastic leukemia by fluorescence in situ hybridization].
    Yang K; Huang L
    Zhonghua Xue Ye Xue Za Zhi; 1999 Dec; 20(12):640-2. PubMed ID: 11721367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.