BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17315200)

  • 21. Computational and experimental approaches for assessing the interactions between the model calycin beta-lactoglobulin and two antibacterial fluoroquinolones.
    Eberini I; Fantucci P; Rocco AG; Gianazza E; Galluccio L; Maggioni D; Ben ID; Galliano M; Mazzitello R; Gaiji N; Beringhelli T
    Proteins; 2006 Nov; 65(3):555-67. PubMed ID: 17001652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates.
    Giurleo JT; He X; Talaga DS
    J Mol Biol; 2008 Sep; 381(5):1332-48. PubMed ID: 18590743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transglutaminase-mediated modification of glutamine and lysine residues in native bovine beta-lactoglobulin.
    Nieuwenhuizen WF; Dekker HL; Gröneveld T; de Koster CG; de Jong GA
    Biotechnol Bioeng; 2004 Feb; 85(3):248-58. PubMed ID: 14748079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation.
    Takahashi T; Mihara H
    Acc Chem Res; 2008 Oct; 41(10):1309-18. PubMed ID: 18937396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Promiscuous binding of ligands by beta-lactoglobulin involves hydrophobic interactions and plasticity.
    Konuma T; Sakurai K; Goto Y
    J Mol Biol; 2007 Apr; 368(1):209-18. PubMed ID: 17331535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal dependence of thermally induced protein spherulite formation and growth: kinetics of beta-lactoglobulin and insulin.
    Domike KR; Donald AM
    Biomacromolecules; 2007 Dec; 8(12):3930-7. PubMed ID: 18039002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study of urea-dependent denaturation of beta-lactoglobulin by principal component analysis and two-dimensional correlation spectroscopy.
    Czarnik-Matusewicz B; Kim SB; Jung YM
    J Phys Chem B; 2009 Jan; 113(2):559-66. PubMed ID: 19093837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of heat-induced beta-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate.
    Jung JM; Savin G; Pouzot M; Schmitt C; Mezzenga R
    Biomacromolecules; 2008 Sep; 9(9):2477-86. PubMed ID: 18698816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Foaming characteristics of chemical and enzymatic hydrolysates of bovine beta-lactoglobulin.
    Rahali V; Guéguen J
    Nahrung; 2000 Oct; 44(5):309-17. PubMed ID: 11075371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selection of recombinant IgE antibodies binding the beta-lactoglobulin allergen in a conformation-dependent manner.
    Jylhä S; Mäkinen-Kiljunen S; Haahtela T; Söderlund H; Takkinen K; Laukkanen ML
    J Immunol Methods; 2009 Oct; 350(1-2):63-70. PubMed ID: 19647743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions between beta-lactoglobulin and aroma compounds: different binding behaviors as a function of ligand structure.
    Tavel L; Andriot I; Moreau C; Guichard E
    J Agric Food Chem; 2008 Nov; 56(21):10208-17. PubMed ID: 18928299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of gamma radiation on beta-lactoglobulin: oligomerization and aggregation.
    Oliveira CL; de la Hoz L; Silva JC; Torriani IL; Netto FM
    Biopolymers; 2007 Feb; 85(3):284-94. PubMed ID: 17031843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular interactions between a recombinant IgE antibody and the beta-lactoglobulin allergen.
    Niemi M; Jylhä S; Laukkanen ML; Söderlund H; Mäkinen-Kiljunen S; Kallio JM; Hakulinen N; Haahtela T; Takkinen K; Rouvinen J
    Structure; 2007 Nov; 15(11):1413-21. PubMed ID: 17997967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 13C-n.m.r. of the cyanylated beta-lactoglobulins: evidence that Cys-121 provides the thiol group of beta-lactoglobulins A and B.
    Phelan P; Malthouse JP
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):511-6. PubMed ID: 8093004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet surface properties and rheology of concentrated oil in water emulsions stabilized by heat-modified beta-lactoglobulin B.
    Knudsen JC; Øgendal LH; Skibsted LH
    Langmuir; 2008 Mar; 24(6):2603-10. PubMed ID: 18288877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural changes in emulsion-bound bovine beta-lactoglobulin affect its proteolysis and immunoreactivity.
    Marengo M; Miriani M; Ferranti P; Bonomi F; Iametti S; Barbiroli A
    Biochim Biophys Acta; 2016 Jul; 1864(7):805-13. PubMed ID: 27085639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin.
    Arnaudov LN; de Vries R
    Biomacromolecules; 2006 Dec; 7(12):3490-8. PubMed ID: 17154479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrogen/deuterium exchange mass spectrometric analysis of conformational changes accompanying the assembly of the yeast prion Ure2p into protein fibrils.
    Redeker V; Halgand F; Le Caer JP; Bousset L; Laprévote O; Melki R
    J Mol Biol; 2007 Jun; 369(4):1113-25. PubMed ID: 17482207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteolysis of bovine beta-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity.
    Iametti S; Rasmussen P; Frøkiaer H; Ferranti P; Addeo F; Bonomi F
    Eur J Biochem; 2002 Mar; 269(5):1362-72. PubMed ID: 11874450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils.
    Nazabal A; Hornemann S; Aguzzi A; Zenobi R
    J Mass Spectrom; 2009 Jun; 44(6):965-77. PubMed ID: 19283723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.