These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17315861)

  • 1. ConCept: de novo design of synthetic receptors for targeted ligands.
    Chen W; Gilson MK
    J Chem Inf Model; 2007; 47(2):425-34. PubMed ID: 17315861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding in water using synthetic receptors.
    Kato Y; Conn MM; Rebek J
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1208-12. PubMed ID: 7862662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer design of bioactive molecules: a method for receptor-based de novo ligand design.
    Moon JB; Howe WJ
    Proteins; 1991; 11(4):314-28. PubMed ID: 1758885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the relation between amplification and binding in dynamic combinatorial libraries of macrocyclic synthetic receptors in water.
    Corbett PT; Sanders JK; Otto S
    Chemistry; 2008; 14(7):2153-66. PubMed ID: 18081129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2017 May; 31(5):419-439. PubMed ID: 28289981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-based scoring functions in drug design: 3. A two-dimensional knowledge-based hydrogen-bonding potential for the prediction of protein-ligand interactions.
    Zheng M; Xiong B; Luo C; Li S; Liu X; Shen Q; Li J; Zhu W; Luo X; Jiang H
    J Chem Inf Model; 2011 Nov; 51(11):2994-3004. PubMed ID: 21999432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Binding of Barbital to a Synthetic Macrocyclic Receptor. A Charge Density Study.
    Du JJ; Hanrahan JR; Solomon VR; Williams PA; Groundwater PW; Overgaard J; Platts JA; Hibbs DE
    J Phys Chem A; 2018 Mar; 122(11):3031-3044. PubMed ID: 29481082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anion binding versus intramolecular hydrogen bonding in neutral macrocyclic amides.
    Chmielewski MJ; Jurczak J
    Chemistry; 2006 Oct; 12(29):7652-67. PubMed ID: 16823784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex macrocycle exploration: parallel, heuristic, and constraint-based conformer generation using ForceGen.
    Jain AN; Cleves AE; Gao Q; Wang X; Liu Y; Sherer EC; Reibarkh MY
    J Comput Aided Mol Des; 2019 Jun; 33(6):531-558. PubMed ID: 31054028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Based Macrocycle Design in Small-Molecule Drug Discovery and Simple Metrics To Identify Opportunities for Macrocyclization of Small-Molecule Ligands.
    Cummings MD; Sekharan S
    J Med Chem; 2019 Aug; 62(15):6843-6853. PubMed ID: 30860377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indole-based macrocycles as a class of receptors for anions.
    Chang KJ; Moon D; Lah MS; Jeong KS
    Angew Chem Int Ed Engl; 2005 Dec; 44(48):7926-9. PubMed ID: 16281317
    [No Abstract]   [Full Text] [Related]  

  • 16. Nanotubular non-covalent macrocycle within non-covalent macrocycle assembly: (MeOH)(12) encapsulated in a molecular clip cyclododecamer.
    Cao LP; Meng XG; Ding JY; Chen YF; Gao M; Wu YD; Li YT; Wu AX; Isaacs L
    Chem Commun (Camb); 2010 Jul; 46(25):4508-10. PubMed ID: 20485785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Macrocyclization: From de novo Macrocycle Generation to Binding Affinity Estimation.
    Wagner V; Jantz L; Briem H; Sommer K; Rarey M; Christ CD
    ChemMedChem; 2017 Nov; 12(22):1866-1872. PubMed ID: 28977738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of preorganization on the affinity of synthetic DNA binding motifs for nucleotide ligands.
    Vollmer S; Richert C
    Org Biomol Chem; 2015 May; 13(20):5734-42. PubMed ID: 25902412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-crystalline mesogens based on cyclo[6]aramides: distinctive phase transitions in response to macrocyclic host-guest interactions.
    Li X; Li B; Chen L; Hu J; Wen C; Zheng Q; Wu L; Zeng H; Gong B; Yuan L
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11147-52. PubMed ID: 26352024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule.
    Bender E; Buist A; Jurzak M; Langlois X; Baggerman G; Verhasselt P; Ercken M; Guo HQ; Wintmolders C; Van den Wyngaert I; Van Oers I; Schoofs L; Luyten W
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8573-8. PubMed ID: 12084918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.