These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17315896)
1. Recognition and modulation of cytochrome c's redox properties using an amphiphilic homopolymer. Sandanaraj BS; Bayraktar H; Krishnamoorthy K; Knapp MJ; Thayumanavan S Langmuir; 2007 Mar; 23(7):3891-7. PubMed ID: 17315896 [TBL] [Abstract][Full Text] [Related]
2. Molecular basis for the electric field modulation of cytochrome C structure and function. De Biase PM; Paggi DA; Doctorovich F; Hildebrandt P; Estrin DA; Murgida DH; Marti MA J Am Chem Soc; 2009 Nov; 131(44):16248-56. PubMed ID: 19886701 [TBL] [Abstract][Full Text] [Related]
3. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers. de Groot MT; Evers TH; Merkx M; Koper MT Langmuir; 2007 Jan; 23(2):729-36. PubMed ID: 17209627 [TBL] [Abstract][Full Text] [Related]
4. Successful recombinant production of Allochromatium vinosum cytochrome c' requires coexpression of cmm genes in heme-rich Escherichia coli JCB712. Evers TH; Merkx M Biochem Biophys Res Commun; 2005 Feb; 327(3):668-74. PubMed ID: 15649399 [TBL] [Abstract][Full Text] [Related]
5. Role of a highly conserved electrostatic interaction on the surface of cytochrome C in control of the redox function. Tai H; Mikami S; Irie K; Watanabe N; Shinohara N; Yamamoto Y Biochemistry; 2010 Jan; 49(1):42-8. PubMed ID: 19947659 [TBL] [Abstract][Full Text] [Related]
6. Heterologous overexpression and purification of cytochrome c' from Rhodobacter capsulatus and a mutant (K42E) in the dimerization region. Mutation does not alter oligomerization but impacts the heme iron spin state and nitric oxide binding properties. Huston WM; Andrew CR; Servid AE; McKay AL; Leech AP; Butler CS; Moir JW Biochemistry; 2006 Apr; 45(14):4388-95. PubMed ID: 16584174 [TBL] [Abstract][Full Text] [Related]
7. Reversibility of structural transition of cytochrome c on interacting with and releasing from alternating copolymers of maleic Acid and alkene. Liang L; Yao P; Jiang M Biomacromolecules; 2006 Jun; 7(6):1829-35. PubMed ID: 16768404 [TBL] [Abstract][Full Text] [Related]
8. Redox-linked conformational changes of a multiheme cytochrome from Geobacter sulfurreducens. Morgado L; Bruix M; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA Biochem Biophys Res Commun; 2007 Aug; 360(1):194-8. PubMed ID: 17583674 [TBL] [Abstract][Full Text] [Related]
9. Characterization and redox properties of cytochrome c552 from Thermus thermophilus adsorbed on different self-assembled thiol monolayers, used to model the chemical environment of the redox partner. Bernad S; Soulimane T; Mehkalif Z; Lecomte S Biopolymers; 2006 Apr; 81(5):407-18. PubMed ID: 16365847 [TBL] [Abstract][Full Text] [Related]
10. Electrostatic complexation and photoinduced electron transfer between Zn-cytochrome c and [olyanionic fullerene dendrimers. Braun M; Atalick S; Guldi DM; Lanig H; Brettreich M; Burghardt S; Hatzimarinaki M; Ravanelli E; Prato M; van Eldik R; Hirsch A Chemistry; 2003 Aug; 9(16):3867-75. PubMed ID: 12916111 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide interaction with cytochrome c' and its relevance to guanylate cyclase. Why does the iron histidine bond break? Martí MA; Capece L; Crespo A; Doctorovich F; Estrin DA J Am Chem Soc; 2005 Jun; 127(21):7721-8. PubMed ID: 15913362 [TBL] [Abstract][Full Text] [Related]
12. Study on the redox state dependent gamma(CH) vibrational modes of the c-type heme. Dörr S; Wolpert M; Hellwig P Biopolymers; 2006 Jul; 82(4):349-52. PubMed ID: 16419062 [TBL] [Abstract][Full Text] [Related]
13. Conformational flexibility decreased due to Y67F and F82H mutations in cytochrome c: molecular dynamics simulation studies. Singh SR; Prakash S; Vasu V; Karunakaran C J Mol Graph Model; 2009 Oct; 28(3):270-7. PubMed ID: 19720549 [TBL] [Abstract][Full Text] [Related]
14. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy. Hagarman A; Duitch L; Schweitzer-Stenner R Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508 [TBL] [Abstract][Full Text] [Related]
15. Redox-coupled dynamics and folding in cytochrome c. Sagle LB; Zimmermann J; Matsuda S; Dawson PE; Romesberg FE J Am Chem Soc; 2006 Jun; 128(24):7909-15. PubMed ID: 16771505 [TBL] [Abstract][Full Text] [Related]
16. Structural and redox properties of mitochondrial cytochrome c co-sorbed with phosphate on hematite (alpha-Fe2O3) surfaces. Khare N; Eggleston CM; Lovelace DM; Boese SW J Colloid Interface Sci; 2006 Nov; 303(2):404-14. PubMed ID: 16945384 [TBL] [Abstract][Full Text] [Related]
17. Recognition of solvent exposed protein surfaces using anthracene derived receptors. Wilson AJ; Hong J; Fletcher S; Hamilton AD Org Biomol Chem; 2007 Jan; 5(2):276-85. PubMed ID: 17205171 [TBL] [Abstract][Full Text] [Related]
18. Functional roles of the heme architecture and its environment in tetraheme cytochrome c. Akutsu H; Takayama Y Acc Chem Res; 2007 Mar; 40(3):171-8. PubMed ID: 17370988 [TBL] [Abstract][Full Text] [Related]
19. Electron-transfer processes of cytochrome C at interfaces. New insights by surface-enhanced resonance Raman spectroscopy. Murgida DH; Hildebrandt P Acc Chem Res; 2004 Nov; 37(11):854-61. PubMed ID: 15612675 [TBL] [Abstract][Full Text] [Related]
20. Redox processes of cytochrome c immobilized on solid supported polyelectrolyte multilayers. Weidinger IM; Murgida DH; Dong WF; Möhwald H; Hildebrandt P J Phys Chem B; 2006 Jan; 110(1):522-9. PubMed ID: 16471564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]