These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17315939)

  • 1. Programmable nanolithography with plasmon nanoparticle arrays.
    Koenderink AF; Hernández JV; Robicheaux F; Noordam LD; Polman A
    Nano Lett; 2007 Mar; 7(3):745-9. PubMed ID: 17315939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holographic evanescent-wave focusing with nanoparticle arrays.
    Evlyukhin AB; Bozhevolnyi SI
    Opt Express; 2008 Oct; 16(22):17429-40. PubMed ID: 18958025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-plasmon-polaritons-assisted nanolithography with dual-wavelength illumination for high exposure depth.
    Shi S; Zhang Z; Du J; Yang Z; Shi R; Li S; Gao F
    Opt Lett; 2012 Jan; 37(2):247-9. PubMed ID: 22854482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays.
    Zou S; Schatz GC
    J Chem Phys; 2004 Dec; 121(24):12606-12. PubMed ID: 15606284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between scattering properties of silver particle arrays and fluorescence enhancement.
    Szmacinski H; Lakowicz JR; Catchmark JM; Eid K; Anderson JP; Middendorf L
    Appl Spectrosc; 2008 Jul; 62(7):733-8. PubMed ID: 18935821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.
    Liu J; Chen C; Yang G; Chen Y; Yang CF
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on forbidden pitch in plasmonic lithography: taking 365 nm wavelength thin silver film-based superlens imaging lithography as an example.
    Ding H; Liu L; Dong L; Han D; Fan T; Zhang L; Wei Y
    Opt Express; 2022 Sep; 30(19):33869-33885. PubMed ID: 36242413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ Raman scattering study on a controllable plasmon-driven surface catalysis reaction on Ag nanoparticle arrays.
    Dai ZG; Xiao XH; Zhang YP; Ren F; Wu W; Zhang SF; Zhou J; Mei F; Jiang CZ
    Nanotechnology; 2012 Aug; 23(33):335701. PubMed ID: 22842646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable wavelength-division multiplexing based on metallic nanoparticle arrays.
    Li J; Hu X; Gu Y; Gong Q
    Opt Lett; 2010 Dec; 35(23):4051-3. PubMed ID: 21124609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the mask magnification on imaging in hyper-NA lithography.
    Lin CH; Chen HL; Ko FH
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1633-40. PubMed ID: 17491631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High performance analysis of layered nanolithography masks by a surface impedance generating operator.
    Gholipour A; Faraji-Dana R; Vandenbosch GA
    J Opt Soc Am A Opt Image Sci Vis; 2017 Apr; 34(4):464-471. PubMed ID: 28375340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subwavelength photolithography based on surface-plasmon polariton resonance.
    Luo X; Ishihara T
    Opt Express; 2004 Jul; 12(14):3055-65. PubMed ID: 19483824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method.
    Portalès H; Pinna N; Pileni MP
    J Phys Chem A; 2009 Apr; 113(16):4094-9. PubMed ID: 19278219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guiding spatial arrangements of silver nanoparticles by optical binding interactions in shaped light fields.
    Yan Z; Shah RA; Chado G; Gray SK; Pelton M; Scherer NF
    ACS Nano; 2013 Feb; 7(2):1790-802. PubMed ID: 23363451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence enhancement using silver nanotriangle arrays.
    Kannadorai RK; Hegde G; Asundi A
    J Nanosci Nanotechnol; 2012 May; 12(5):3873-8. PubMed ID: 22852319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced fluorescence from periodic arrays of silver nanoparticles.
    Corrigan TD; Guo S; Phaneuf RJ; Szmacinski H
    J Fluoresc; 2005 Sep; 15(5):777-84. PubMed ID: 16341797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the optical properties of pyramidal nanoparticle arrays.
    Henzie J; Shuford KL; Kwak ES; Schatz GC; Odom TW
    J Phys Chem B; 2006 Jul; 110(29):14028-31. PubMed ID: 16854094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic lithography fast imaging model based on the decomposition machine learning method.
    Ding H; Liu L; Li Z; Dong L; Wei Y; Ye T
    Opt Express; 2023 Jan; 31(1):192-210. PubMed ID: 36606960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions.
    Gunnarsson L; Rindzevicius T; Prikulis J; Kasemo B; Käll M; Zou S; Schatz GC
    J Phys Chem B; 2005 Jan; 109(3):1079-87. PubMed ID: 16851063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.