These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 17316858)
1. Characterization of a Torulaspora delbrueckii diploid strain with optimized performance in sweet and frozen sweet dough. Hernández-López MJ; Pallotti C; Andreu P; Aguilera J; Prieto JA; Randez-Gil F Int J Food Microbiol; 2007 May; 116(1):103-10. PubMed ID: 17316858 [TBL] [Abstract][Full Text] [Related]
2. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker's yeast strains. Hernandez-Lopez MJ; Prieto JA; Randez-Gil F Antonie Van Leeuwenhoek; 2003; 84(2):125-34. PubMed ID: 14533716 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Sasano Y; Takahashi S; Shima J; Takagi H Int J Food Microbiol; 2010 Mar; 138(1-2):181-5. PubMed ID: 20096471 [TBL] [Abstract][Full Text] [Related]
4. Improvement of tolerance to freeze-thaw stress of baker's yeast by cultivation with soy peptides. Izawa S; Ikeda K; Takahashi N; Inoue Y Appl Microbiol Biotechnol; 2007 Jun; 75(3):533-7. PubMed ID: 17505771 [TBL] [Abstract][Full Text] [Related]
5. Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Sasano Y; Haitani Y; Ohtsu I; Shima J; Takagi H Int J Food Microbiol; 2012 Jan; 152(1-2):40-3. PubMed ID: 22041027 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of a freeze-tolerant diploid derivative of an industrial baker's yeast strain and its use in frozen doughs. Teunissen A; Dumortier F; Gorwa MF; Bauer J; Tanghe A; Loïez A; Smet P; Van Dijck P; Thevelein JM Appl Environ Microbiol; 2002 Oct; 68(10):4780-7. PubMed ID: 12324320 [TBL] [Abstract][Full Text] [Related]
7. Enhanced leavening properties of baker's yeast by reducing sucrase activity in sweet dough. Zhang CY; Lin X; Feng B; Liu XE; Bai XW; Xu J; Pi L; Xiao DG Appl Microbiol Biotechnol; 2016 Jul; 100(14):6375-6383. PubMed ID: 27041690 [TBL] [Abstract][Full Text] [Related]
8. Deficiency in the glycerol channel Fps1p confers increased freeze tolerance to yeast cells: application of the fps1delta mutant to frozen dough technology. Izawa S; Ikeda K; Maeta K; Inoue Y Appl Microbiol Biotechnol; 2004 Dec; 66(3):303-5. PubMed ID: 15278313 [TBL] [Abstract][Full Text] [Related]
9. New Saccharomyces cerevisiae baker's yeast displaying enhanced resistance to freezing. Codón AC; Rincón AM; Moreno-Mateos MA; Delgado-Jarana J; Rey M; Limón C; Rosado IV; Cubero B; Peñate X; Castrejón F; Benítez T J Agric Food Chem; 2003 Jan; 51(2):483-91. PubMed ID: 12517114 [TBL] [Abstract][Full Text] [Related]
10. Freeze tolerance of the yeast Torulaspora delbrueckii: cellular and biochemical basis. Alves-Araújo C; Almeida MJ; Sousa MJ; Leão C FEMS Microbiol Lett; 2004 Nov; 240(1):7-14. PubMed ID: 15500973 [TBL] [Abstract][Full Text] [Related]
11. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730 [TBL] [Abstract][Full Text] [Related]
12. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough. Panadero J; Randez-Gil F; Prieto JA J Agric Food Chem; 2005 Dec; 53(26):9966-70. PubMed ID: 16366681 [TBL] [Abstract][Full Text] [Related]
13. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
14. Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Watanabe D; Sekiguchi H; Sugimoto Y; Nagasawa A; Kida N; Takagi H Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29625985 [TBL] [Abstract][Full Text] [Related]
15. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Panadero J; Hernández-López MJ; Prieto JA; Randez-Gil F Appl Environ Microbiol; 2007 Aug; 73(15):4824-31. PubMed ID: 17557846 [TBL] [Abstract][Full Text] [Related]
16. Leavening ability and freeze tolerance of yeasts isolated from traditional corn and rye bread doughs. Almeida MJ; Pais C Appl Environ Microbiol; 1996 Dec; 62(12):4401-4. PubMed ID: 8953712 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H J Biosci Bioeng; 2012 May; 113(5):592-5. PubMed ID: 22280966 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H Microb Cell Fact; 2012 Apr; 11():40. PubMed ID: 22462683 [TBL] [Abstract][Full Text] [Related]
19. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker's yeast. Lin X; Zhang CY; Bai XW; Feng B; Xiao DG Int J Food Microbiol; 2015 Mar; 197():15-21. PubMed ID: 25555226 [TBL] [Abstract][Full Text] [Related]