BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17317125)

  • 21. Effects of drying technique on extrusion-spheronisation granules and tablet properties.
    Song B; Rough SL; Wilson DI
    Int J Pharm; 2007 Mar; 332(1-2):38-44. PubMed ID: 17071030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustained release pellets based on poly(N-isopropyl acrylamide): matrix and in situ photopolymerization-coated systems.
    Mayo-Pedrosa M; Alvarez-Lorenzo C; Lacík I; Martinez-Pacheco R; Concheiro A
    J Pharm Sci; 2007 Jan; 96(1):93-105. PubMed ID: 16967440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extrusion-Spheronization of blends of carbopol 934 and microcrystalline cellulose.
    Gómez-Carracedo A; Alvarez-Lorenzo C; Gómez-Amoza JL; Martínez-Pacheco R; Souto C; Concheiro A
    Drug Dev Ind Pharm; 2001 May; 27(5):381-91. PubMed ID: 11448045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of drying on extruded pellets based on kappa-carrageenan.
    Thommes M; Blaschek W; Kleinebudde P
    Eur J Pharm Sci; 2007 Jun; 31(2):112-8. PubMed ID: 17448646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug release mechanism from a microcrystalline cellulose pellet system.
    O'Connor RE; Schwartz JB
    Pharm Res; 1993 Mar; 10(3):356-61. PubMed ID: 8464807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Drug release from MCC- and carrageenan-based pellets: experiment and theory.
    Kranz H; Jürgens K; Pinier M; Siepmann J
    Eur J Pharm Biopharm; 2009 Oct; 73(2):302-9. PubMed ID: 19465119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of carbohydrate nature and drying methods on the compaction properties and pore structure of new methyl methacrylate copolymers.
    Ferrero C; Jiménez-Castellanos MR
    Int J Pharm; 2002 Nov; 248(1-2):157-71. PubMed ID: 12429470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate.
    Lee MK; Kim MY; Kim S; Lee J
    J Pharm Sci; 2009 Dec; 98(12):4808-17. PubMed ID: 19475555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of storage condition on properties of MCC II-based pellets with theophylline-monohydrate.
    Krueger C; Thommes M; Kleinebudde P
    Eur J Pharm Biopharm; 2014 Oct; 88(2):483-91. PubMed ID: 24950003
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influences of layering on theophylline pellet characteristics.
    Sinchaipanid N; Chitropas P; Mitrevej A
    Pharm Dev Technol; 2004; 9(2):163-70. PubMed ID: 15202575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying.
    Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP
    J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in the mechanical strength of dried microcrystalline cellulose pellets are not due to significant changes in the degree of hydrogen bonding.
    Millili GP; Wigent RJ; Schwartz JB
    Pharm Dev Technol; 1996 Oct; 1(3):239-49. PubMed ID: 9552306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the stabilizing effects of hydroxyethyl cellulose on LDH during freeze drying and freeze thawing cycles.
    Al-Hussein A; Gieseler H
    Pharm Dev Technol; 2015 Jan; 20(1):50-9. PubMed ID: 24286265
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release.
    Paukkonen H; Kunnari M; Laurén P; Hakkarainen T; Auvinen VV; Oksanen T; Koivuniemi R; Yliperttula M; Laaksonen T
    Int J Pharm; 2017 Oct; 532(1):269-280. PubMed ID: 28888974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of prednisolone in controlled porosity osmotic pump pellets using solid-state NMR spectroscopy.
    Sotthivirat S; Lubach JW; Haslam JL; Munson EJ; Stella VJ
    J Pharm Sci; 2007 May; 96(5):1008-17. PubMed ID: 17455361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of the drying technique on theophylline pellets prepared by extrusion-spheronization.
    Pérez J; Rabisková M
    Int J Pharm; 2002 Aug; 242(1-2):349-51. PubMed ID: 12176277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasability of a new process to produce fast disintegrating pellets as novel multiparticulate dosage form for pediatric use.
    Hoang Thi TH; Lhafidi S; Carneiro SP; Flament MP
    Int J Pharm; 2015 Dec; 496(2):842-9. PubMed ID: 26403385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellulose acetate butyrate and polycaprolactone for ketoprofen spray-dried microsphere preparation.
    Giunchedi P; Conti B; Maggi L; Conte U
    J Microencapsul; 1994; 11(4):381-93. PubMed ID: 7931938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beads made of α-cyclodextrin and soybean oil: the drying method influences bead properties and drug release.
    Hamoudi MC; Saunier J; Gueutin C; Fattal E; Bochot A
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1306-14. PubMed ID: 23050693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein spheres prepared by drop jet freeze drying.
    Eggerstedt SN; Dietzel M; Sommerfeld M; Süverkrüp R; Lamprecht A
    Int J Pharm; 2012 Nov; 438(1-2):160-6. PubMed ID: 22960322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.