BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 17317339)

  • 1. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas.
    Prabhakar NR; Peng YJ; Kumar GK; Pawar A
    Respir Physiol Neurobiol; 2007 Jul; 157(1):148-53. PubMed ID: 17317339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of neonatal and adult rat carotid body responses to chronic intermittent hypoxia.
    Pawar A; Peng YJ; Jacono FJ; Prabhakar NR
    J Appl Physiol (1985); 2008 May; 104(5):1287-94. PubMed ID: 18187605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia.
    Peng YJ; Yuan G; Ramakrishnan D; Sharma SD; Bosch-Marce M; Kumar GK; Semenza GL; Prabhakar NR
    J Physiol; 2006 Dec; 577(Pt 2):705-16. PubMed ID: 16973705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas.
    Peng YJ; Overholt JL; Kline D; Kumar GK; Prabhakar NR
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):10073-8. PubMed ID: 12907705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term regulation of carotid body function: acclimatization and adaptation--invited article.
    Prabhakar NR; Peng YJ; Kumar GK; Nanduri J; Di Giulio C; Lahiri S
    Adv Exp Med Biol; 2009; 648():307-17. PubMed ID: 19536494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia.
    Prabhakar NR; Kumar GK; Nanduri J; Semenza GL
    Antioxid Redox Signal; 2007 Sep; 9(9):1397-403. PubMed ID: 17627465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute intermittent hypoxia with concurrent hypercapnia evokes P2X and TRPV1 receptor-dependent sensory long-term facilitation in naïve carotid bodies.
    Roy A; Farnham MMJ; Derakhshan F; Pilowsky PM; Wilson RJA
    J Physiol; 2018 Aug; 596(15):3149-3169. PubMed ID: 29159869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of oxidative stress-induced endothelin-converting enzyme activity in the alteration of carotid body function by chronic intermittent hypoxia.
    Peng YJ; Nanduri J; Raghuraman G; Wang N; Kumar GK; Prabhakar NR
    Exp Physiol; 2013 Nov; 98(11):1620-30. PubMed ID: 23913764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systemic, cellular and molecular analysis of chemoreflex-mediated sympathoexcitation by chronic intermittent hypoxia.
    Prabhakar NR; Dick TE; Nanduri J; Kumar GK
    Exp Physiol; 2007 Jan; 92(1):39-44. PubMed ID: 17124274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of olfactory receptor78 in carotid body-dependent sympathetic activation and hypertension in murine models of chronic intermittent hypoxia.
    Peng YJ; Su X; Wang B; Matthews T; Nanduri J; Prabhakar NR
    J Neurophysiol; 2021 Jun; 125(6):2054-2067. PubMed ID: 33909496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of endothelin antagonism on apnea frequency following chronic intermittent hypoxia.
    Donovan LM; Liu Y; Weiss JW
    Respir Physiol Neurobiol; 2014 Apr; 194():6-8. PubMed ID: 24468467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotid body potentiation induced by intermittent hypoxia: implications for cardiorespiratory changes induced by sleep apnoea.
    Iturriaga R; Moya EA; Del Rio R
    Clin Exp Pharmacol Physiol; 2009 Dec; 36(12):1197-204. PubMed ID: 19473190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia.
    Peng YJ; Prabhakar NR
    J Appl Physiol (1985); 2003 Jun; 94(6):2342-9. PubMed ID: 12533494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms.
    Prabhakar NR
    J Appl Physiol (1985); 2001 May; 90(5):1986-94. PubMed ID: 11299293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympatho-adrenal activation by chronic intermittent hypoxia.
    Prabhakar NR; Kumar GK; Peng YJ
    J Appl Physiol (1985); 2012 Oct; 113(8):1304-10. PubMed ID: 22723632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome.
    Nanduri J; Peng YJ; Yuan G; Kumar GK; Prabhakar NR
    J Mol Med (Berl); 2015 May; 93(5):473-80. PubMed ID: 25772710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Carotid Body in Intermittent Hypoxia-Related Hypertension.
    Iturriaga R; Oyarce MP; Dias ACR
    Curr Hypertens Rep; 2017 May; 19(5):38. PubMed ID: 28451849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in carotid body and nTS neuronal excitability following neonatal sustained and chronic intermittent hypoxia exposure.
    Mayer CA; Wilson CG; MacFarlane PM
    Respir Physiol Neurobiol; 2015 Jan; 205():28-36. PubMed ID: 25266393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.
    Makarenko VV; Ahmmed GU; Peng YJ; Khan SA; Nanduri J; Kumar GK; Fox AP; Prabhakar NR
    J Neurophysiol; 2016 Jan; 115(1):345-54. PubMed ID: 26561606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia.
    Semenza GL; Prabhakar NR
    Antioxid Redox Signal; 2007 Sep; 9(9):1391-6. PubMed ID: 17627473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.