BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17317722)

  • 1. Identification of a potent combination of osteogenic genes for bone regeneration using embryonic stem (ES) cell-based sensor.
    Ohba S; Ikeda T; Kugimiya F; Yano F; Lichtler AC; Nakamura K; Takato T; Kawaguchi H; Chung UI
    FASEB J; 2007 Jun; 21(8):1777-87. PubMed ID: 17317722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Optimization of signaling pathways for bone regeneration].
    Ogata N; Chung UI; Tei Y; Ohba S; Kawaguchi H
    Clin Calcium; 2008 Dec; 18(12):1707-12. PubMed ID: 19043183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.
    Kim MJ; Park JS; Kim S; Moon SH; Yang HN; Park KH; Chung HM
    Stem Cells Dev; 2011 Aug; 20(8):1349-58. PubMed ID: 21126165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cbfbeta interacts with Runx2 and has a critical role in bone development.
    Kundu M; Javed A; Jeon JP; Horner A; Shum L; Eckhaus M; Muenke M; Lian JB; Yang Y; Nuckolls GH; Stein GS; Liu PP
    Nat Genet; 2002 Dec; 32(4):639-44. PubMed ID: 12434156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation.
    Lien CY; Lee OK; Su Y
    Stem Cells; 2007 Jun; 25(6):1462-8. PubMed ID: 17379770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone regeneration by regulated in vivo gene transfer using biocompatible polyplex nanomicelles.
    Itaka K; Ohba S; Miyata K; Kawaguchi H; Nakamura K; Takato T; Chung UI; Kataoka K
    Mol Ther; 2007 Sep; 15(9):1655-62. PubMed ID: 17551504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved regulatory motifs in osteogenic gene promoters integrate cooperative effects of canonical Wnt and BMP pathways.
    Rodríguez-Carballo E; Ulsamer A; Susperregui AR; Manzanares-Céspedes C; Sánchez-García E; Bartrons R; Rosa JL; Ventura F
    J Bone Miner Res; 2011 Apr; 26(4):718-29. PubMed ID: 20878775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation.
    Li G; Peng H; Corsi K; Usas A; Olshanski A; Huard J
    J Bone Miner Res; 2005 Sep; 20(9):1611-23. PubMed ID: 16059633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of bone regeneration by gene delivery of BMP2/Runx2 bicistronic vector into adipose-derived stromal cells.
    Lee SJ; Kang SW; Do HJ; Han I; Shin DA; Kim JH; Lee SH
    Biomaterials; 2010 Jul; 31(21):5652-9. PubMed ID: 20413153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA interference of the BMPR-IB gene blocks BMP-2-induced osteogenic gene expression in human bone cells.
    Singhatanadgit W; Salih V; Olsen I
    Cell Biol Int; 2008 Nov; 32(11):1362-70. PubMed ID: 18773965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene transfer of the Runx2 transcription factor enhances osteogenic activity of bone marrow stromal cells in vitro and in vivo.
    Zhao Z; Zhao M; Xiao G; Franceschi RT
    Mol Ther; 2005 Aug; 12(2):247-53. PubMed ID: 16043096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling.
    Yonezawa T; Lee JW; Hibino A; Asai M; Hojo H; Cha BY; Teruya T; Nagai K; Chung UI; Yagasaki K; Woo JT
    Biochem Biophys Res Commun; 2011 Jun; 409(2):260-5. PubMed ID: 21570953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells.
    Lee JS; Lee JM; Im GI
    Biomaterials; 2011 Jan; 32(3):760-8. PubMed ID: 20947160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leporine-derived adipose precursor cells exhibit in vitro osteogenic potential.
    Dudas JR; Losee JE; Penascino VM; Smith DM; Cooper GM; Mooney MP; Jiang S; Rubin JP; Marra KG
    J Craniofac Surg; 2008 Mar; 19(2):360-8. PubMed ID: 18362712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the odontogenic and osteogenic potentials of dental pulp in vivo using a Col1a1-2.3-GFP transgene.
    Braut A; Kollar EJ; Mina M
    Int J Dev Biol; 2003 May; 47(4):281-92. PubMed ID: 12755333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.
    Morsczeck C
    Calcif Tissue Int; 2006 Feb; 78(2):98-102. PubMed ID: 16467978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healing cranial defects with AdRunx2-transduced marrow stromal cells.
    Zhao Z; Wang Z; Ge C; Krebsbach P; Franceschi RT
    J Dent Res; 2007 Dec; 86(12):1207-11. PubMed ID: 18037657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel osteogenic helioxanthin-derivative acts in a BMP-dependent manner.
    Ohba S; Nakajima K; Komiyama Y; Kugimiya F; Igawa K; Itaka K; Moro T; Nakamura K; Kawaguchi H; Takato T; Chung UI
    Biochem Biophys Res Commun; 2007 Jun; 357(4):854-60. PubMed ID: 17451649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of high-throughput screening system for osteogenic drugs using a cell-based sensor.
    Hojo H; Igawa K; Ohba S; Yano F; Nakajima K; Komiyama Y; Ikeda T; Lichtler AC; Woo JT; Yonezawa T; Takato T; Chung UI
    Biochem Biophys Res Commun; 2008 Nov; 376(2):375-9. PubMed ID: 18789892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of RUNX2 expression to identify osteogenic progenitor cells derived from human embryonic stem cells.
    Zou L; Kidwai FK; Kopher RA; Motl J; Kellum CA; Westendorf JJ; Kaufman DS
    Stem Cell Reports; 2015 Feb; 4(2):190-8. PubMed ID: 25680477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.