These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1731789)

  • 1. Structural features of carbohydrate moieties in snake venom glycoproteins.
    Gowda DC; Davidson EA
    Biochem Biophys Res Commun; 1992 Jan; 182(1):294-301. PubMed ID: 1731789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of novel mucin-like glycoproteins from cobra venom.
    Gowda DC; Davidson EA
    J Biol Chem; 1994 Aug; 269(31):20031-9. PubMed ID: 8051088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factor X-activating glycoprotein of Russell's viper venom. Polypeptide composition and characterization of the carbohydrate moieties.
    Gowda DC; Jackson CM; Hensley P; Davidson EA
    J Biol Chem; 1994 Apr; 269(14):10644-50. PubMed ID: 8144654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the major oligosaccharide of cobra venom factor.
    Gowda DC; Schultz M; Bredehorst R; Vogel CW
    Mol Immunol; 1992 Mar; 29(3):335-42. PubMed ID: 1557044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Venom-sweet-venom: N-linked glycosylation in snake venom toxins.
    Soares SG; Oliveira LL
    Protein Pept Lett; 2009; 16(8):913-9. PubMed ID: 19689418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-linked oligosaccharides of cobra venom factor contain novel alpha(1-3)galactosylated Le(x) structures.
    Gowda DC; Glushka J; Halbeek Hv ; Thotakura RN; Bredehorst R; Vogel CW
    Glycobiology; 2001 Mar; 11(3):195-208. PubMed ID: 11320058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of proteomic profiles of the venoms of two of the 'Big Four' snakes of India, the Indian cobra (Naja naja) and the common krait (Bungarus caeruleus), and analyses of their toxins.
    Choudhury M; McCleary RJR; Kesherwani M; Kini RM; Velmurugan D
    Toxicon; 2017 Sep; 135():33-42. PubMed ID: 28602829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches.
    Liu CC; You CH; Wang PJ; Yu JS; Huang GJ; Liu CH; Hsieh WC; Lin CC
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006138. PubMed ID: 29244815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins.
    Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B
    Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of N-glycosidic carbohydrates of secretory proteins of Tetrahymena thermophila.
    Becker B; Rüsing M
    J Eukaryot Microbiol; 2003; 50(4):235-9. PubMed ID: 15132165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The first representative of glycosylated three-fingered toxins. Cytotoxin from the Naja kaouthia cobra venom.
    Osipov AV; Astapova MV; Tsetlin VI; Utkin YN
    Eur J Biochem; 2004 May; 271(10):2018-27. PubMed ID: 15128311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the glycosylation of apolipoprotein H.
    Gambino R; Ruiu G; Pagano G; Cassader M
    Chem Phys Lipids; 1999 Dec; 103(1-2):161-74. PubMed ID: 10701081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Venom yields from Australian and some other species of snakes.
    Mirtschin PJ; Dunstan N; Hough B; Hamilton E; Klein S; Lucas J; Millar D; Madaras F; Nias T
    Ecotoxicology; 2006 Aug; 15(6):531-8. PubMed ID: 16937075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Snake venom proteinase inhibitors. III. Isolation of five polypeptide inhibitors from the venoms of Hemachatus haemachatus (Ringhal's corbra) and Naja nivea (Cape cobra) and the complete amino acid sequences of two of them.
    Hokama Y; Iwanaga S; Tatsuki T; Suzuki T
    J Biochem; 1976 Mar; 79(3):559-78. PubMed ID: 950337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural divergence of cysteine-rich secretory proteins in snake venoms.
    Matsunaga Y; Yamazaki Y; Hyodo F; Sugiyama Y; Nozaki M; Morita T
    J Biochem; 2009 Mar; 145(3):365-75. PubMed ID: 19106157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetylcholinesterase from snake venom as a model for its nerve and muscle counterpart.
    Cousin X; Bon C
    J Nat Toxins; 1999 Jun; 8(2):285-94. PubMed ID: 10410339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah.
    Zeng L; Sun QY; Jin Y; Zhang Y; Lee WH; Zhang Y
    Toxicon; 2012 Sep; 60(3):290-301. PubMed ID: 22561424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STUDIES ON HABU SNAKE VENOM. VI. CYTOTOXIC EFFECT OF HABU (TRIMERESURUS FLAVOVIRIDIS HALLOWELL) AND COBRA (NAJA NAJA) VENOMS ON THE CELLS IN VITRO.
    SATO I; RYAN KW; MITSUHASHI S
    Jpn J Exp Med; 1964 Jun; 34():119-24. PubMed ID: 14192590
    [No Abstract]   [Full Text] [Related]  

  • 19. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry.
    Calderón-Celis F; Cid-Barrio L; Encinar JR; Sanz-Medel A; Calvete JJ
    J Proteomics; 2017 Jul; 164():33-42. PubMed ID: 28579478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protective effect of Mucuna pruriens seeds against snake venom poisoning.
    Tan NH; Fung SY; Sim SM; Marinello E; Guerranti R; Aguiyi JC
    J Ethnopharmacol; 2009 Jun; 123(2):356-8. PubMed ID: 19429384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.