BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17318823)

  • 1. Natural composite of wood as replacement material for ostechondral bone defects.
    Aho AJ; Rekola J; Matinlinna J; Gunn J; Tirri T; Viitaniemi P; Vallittu P
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):64-71. PubMed ID: 17318823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of heat treatment of wood on osteoconductivity.
    Rekola J; Aho AJ; Gunn J; Matinlinna J; Hirvonen J; Viitaniemi P; Vallittu PK
    Acta Biomater; 2009 Jun; 5(5):1596-604. PubMed ID: 19231305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite.
    Fan X; Peng H; Li H; Yan Y
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of heat treatment of wood on the morphology, surface roughness and penetration of simulated and human blood.
    Rekola J; Lassila LV; Nganga S; Ylä-Soininmäki A; Fleming GJ; Grenman R; Aho AJ; Vallittu PK
    Biomed Mater Eng; 2014; 24(3):1595-607. PubMed ID: 24840198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques.
    Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The bone response of oxidized bioactive and non-bioactive titanium implants.
    Sul YT; Johansson C; Byon E; Albrektsson T
    Biomaterials; 2005 Nov; 26(33):6720-30. PubMed ID: 15975649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary investigation of bioactivity of nano biocomposite.
    Jie W; Hua H; Lan W; Yi H; Yubao L
    J Mater Sci Mater Med; 2007 Mar; 18(3):529-33. PubMed ID: 17334705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demineralized dentin matrix composite collagen material for bone tissue regeneration.
    Li J; Yang J; Zhong X; He F; Wu X; Shen G
    J Biomater Sci Polym Ed; 2013; 24(13):1519-28. PubMed ID: 23848446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vegetable hierarchical structures as template for bone regeneration: New bio-ceramization process for the development of a bone scaffold applied to an experimental sheep model.
    Filardo G; Roffi A; Fey T; Fini M; Giavaresi G; Marcacci M; Martínez-Fernández J; Martini L; Ramírez-Rico J; Salamanna F; Sandri M; Sprio S; Tampieri A; Kon E
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):600-611. PubMed ID: 31095882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects.
    James K; Levene H; Parsons JR; Kohn J
    Biomaterials; 1999 Dec; 20(23-24):2203-12. PubMed ID: 10614927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and osteoconductivity of porous bioactive titanium.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of calcium phosphate bone substitute on defect resolution around a rough-surfaced dental implants in dogs.
    Kim S; Jung UW; Lee YK; Choi SH
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):21-6. PubMed ID: 21887764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous bioactive glass matrix in reconstruction of articular osteochondral defects.
    Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT
    Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone growth in biomimetic apatite coated porous Polyactive 1000PEGT70PBT30 implants.
    Du C; Meijer GJ; van de Valk C; Haan RE; Bezemer JM; Hesseling SC; Cui FZ; de Groot K; Layrolle P
    Biomaterials; 2002 Dec; 23(23):4649-56. PubMed ID: 12322986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metallic materials stimulating bone formation.
    Kokubo T
    Med J Malaysia; 2004 May; 59 Suppl B():91-2. PubMed ID: 15468833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface chemistry and biological responses to synthetic octacalcium phosphate.
    Suzuki O; Kamakura S; Katagiri T
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):201-12. PubMed ID: 16222696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Juniper wood as a possible implant material.
    Gross KA; Ezerietis E
    J Biomed Mater Res A; 2003 Mar; 64(4):672-83. PubMed ID: 12601779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair.
    Liu J; Liao J; Li Y; Yang Z; Ying Q; Xie Y; Zhou A
    J Biomater Appl; 2019 Aug; 34(2):239-249. PubMed ID: 31042122
    [No Abstract]   [Full Text] [Related]  

  • 20. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM.
    Hautamäki MP; Aho AJ; Alander P; Rekola J; Gunn J; Strandberg N; Vallittu PK
    Acta Orthop; 2008 Aug; 79(4):555-64. PubMed ID: 18766491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.