BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1731928)

  • 1. Isolation and characterization of the triply oxidized derivative of a cross-linked hemoglobin.
    Fowler SA; Walder J; DeYoung A; Kwiatkowski LD; Noble RW
    Biochemistry; 1992 Jan; 31(3):717-25. PubMed ID: 1731928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and kinetic characterization of a series of betaW37 variants of human hemoglobin A: evidence for high-affinity T quaternary structures.
    Kwiatkowski LD; Hui HL; Wierzba A; Noble RW; Walder RY; Peterson ES; Sligar SG; Sanders KE
    Biochemistry; 1998 Mar; 37(13):4325-35. PubMed ID: 9521753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric kinetics and equilibria of triligated, cross-linked hemoglobin.
    Zhao M; Jiang J; Greene M; Andracki ME; Fowler SA; Walder JA; Ferrone FA
    Biophys J; 1993 May; 64(5):1520-32. PubMed ID: 8324188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP.
    Kanaori K; Tajiri Y; Tsuneshige A; Ishigami I; Ogura T; Tajima K; Neya S; Yonetani T
    Biochim Biophys Acta; 2011 Oct; 1807(10):1253-61. PubMed ID: 21703224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium oxygen binding to human hemoglobin cross-linked between the alpha chains by bis(3,5-dibromosalicyl) fumarate.
    Vandegriff KD; Medina F; Marini MA; Winslow RM
    J Biol Chem; 1989 Oct; 264(30):17824-33. PubMed ID: 2808353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of the T-state of hemoglobin.
    Gill SJ; Doyle ML; Simmons JH
    Biochem Biophys Res Commun; 1989 Nov; 165(1):226-33. PubMed ID: 2590223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of a new hemoglobin derivative cross-linked between the alpha chains (lysine 99 alpha 1----lysine 99 alpha 2).
    Chatterjee R; Welty EV; Walder RY; Pruitt SL; Rogers PH; Arnone A; Walder JA
    J Biol Chem; 1986 Jul; 261(21):9929-37. PubMed ID: 3090027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of organic phosphates on the Bohr effect of human hemoglobin valency hybrids.
    Rollema HS; De Bruin SH; Van Os GA
    Biophys Chem; 1976 May; 4(3):223-8. PubMed ID: 7327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and stability of partially oxidized intermediates of carp hemoglobin: kinetics of CO binding to the mono- and triferric species.
    Kwiatkowski LD; De Young A; Noble RW
    Biochemistry; 1994 May; 33(19):5884-93. PubMed ID: 8180217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of crosslinking by bis(3,5-dibromosalicyl) fumarate on the autoxidation of hemoglobin.
    Yang T; Olsen KW
    Biochem Biophys Res Commun; 1989 Sep; 163(2):733-8. PubMed ID: 2783118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. T-state hemoglobin with four ligands bound.
    Marden MC; Kister J; Bohn B; Poyart C
    Biochemistry; 1988 Mar; 27(5):1659-64. PubMed ID: 3365418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations of the betaN102 residue of HbA not only inhibit the ligand-linked T to Re state transition, but also profoundly affect the properties of the T state itself.
    Kwiatkowski LD; Hui HL; Karasik E; Colby JE; Noble RW
    Biochemistry; 2007 Feb; 46(7):2037-49. PubMed ID: 17253771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton nuclear magnetic resonance studies of hemoglobin M Milwaukee and their implications concerning the mechanism of cooperative oxygenation of hemoglobin.
    Fung LW; Minton AP; Lindstrom TR; Pisciotta AV; Ho C
    Biochemistry; 1977 Apr; 16(7):1452-62. PubMed ID: 849426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of inositol hexaphosphate binding on subunit dissociation in methemoglobin.
    Hensley P; Moffat K; Edelstein SJ
    J Biol Chem; 1975 Dec; 250(24):9391-6. PubMed ID: 1194291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of ferric iron spin and allosteric equilibrium in hemoglobin.
    Marden MC; Kiger L; Kister J; Bohn B; Poyart C
    Biophys J; 1991 Oct; 60(4):770-6. PubMed ID: 1742452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of globin structures on the state of the heme. Ferrous low spin derivatives.
    Perutz MF; Kilmartin JV; Nagai K; Szabo A; Simon SR
    Biochemistry; 1976 Jan; 15(2):378-87. PubMed ID: 1247524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ligands of ferric hemes on interaction between ferric and ferrous chains in partially oxidized hemoglobin A.
    Pawlak AL
    Acta Biol Med Ger; 1977; 36(5-6):621-4. PubMed ID: 23630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional consequences of mutations at the allosteric interface in hetero- and homo-hemoglobin tetramers.
    Baudin V; Pagnier J; Kiger L; Kister J; Schaad O; Bihoreau MT; Lacaze N; Marden MC; Edelstein SJ; Poyart C
    Protein Sci; 1993 Aug; 2(8):1320-30. PubMed ID: 8401217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the allosteric equilibrium of hemoglobin by cross-linking agents.
    Marden MC; Cabanes-Macheteau M; Babes A; Kiger L; Griffon N; Poyart C; Boyiri T; Safo MK; Abraham DJ
    Protein Sci; 2002 Jun; 11(6):1376-83. PubMed ID: 12021436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99.
    Vandegriff KD; Le Tellier YC; Winslow RM; Rohlfs RJ; Olson JS
    J Biol Chem; 1991 Sep; 266(26):17049-59. PubMed ID: 1910038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.