These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 1731937)
1. Reversal of enzyme regiospecificity with alternative substrates for aspartokinase I from Escherichia coli. Angeles TS; Hunsley JR; Viola RE Biochemistry; 1992 Jan; 31(3):799-805. PubMed ID: 1731937 [TBL] [Abstract][Full Text] [Related]
2. Specificity of aspartokinase III from Escherichia coli and an examination of important catalytic residues. Keng YF; Viola RE Arch Biochem Biophys; 1996 Nov; 335(1):73-81. PubMed ID: 8914836 [TBL] [Abstract][Full Text] [Related]
3. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli. Shames SL; Ash DE; Wedler FC; Villafranca JJ J Biol Chem; 1984 Dec; 259(24):15331-9. PubMed ID: 6150934 [TBL] [Abstract][Full Text] [Related]
4. Cobalt(III) affinity-labeled aspartokinase. Formation of substrate and inhibitor adducts. Wright JK; Feldman J; Takahashi M Biochemistry; 1976 Aug; 15(17):3704-10. PubMed ID: 182215 [TBL] [Abstract][Full Text] [Related]
5. The kinetic mechanisms of the bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli. Angeles TS; Viola RE Arch Biochem Biophys; 1990 Nov; 283(1):96-101. PubMed ID: 2241177 [TBL] [Abstract][Full Text] [Related]
6. Aspartokinase-homoserine dehydrogenase I from Escherichia coli: pH and chemical modification studies of the kinase activity. Angeles TS; Smanik PA; Borders CL; Viola RE Biochemistry; 1989 Oct; 28(22):8771-7. PubMed ID: 2557908 [TBL] [Abstract][Full Text] [Related]
7. Interaction of substrates and inhibitors with the homoserine dehydrogenase of kinase-inactivated aspartokinase I. Wright JK; Takahashi M Biochemistry; 1977 Apr; 16(8):1541-8. PubMed ID: 192265 [TBL] [Abstract][Full Text] [Related]
8. Nuclear-magnetic-relaxation studies of the interaction of inhibitor with the threonine-sensitive aspartokinase of Escherichia coli. Tilak A; Wright K; Damle S; Takahashi M Eur J Biochem; 1976 Oct; 69(1):249-55. PubMed ID: 186263 [TBL] [Abstract][Full Text] [Related]
9. Purification, crystallization and preliminary X-ray analysis of aspartokinase III from Escherichia coli. Blanco J; Viola RE Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):352-4. PubMed ID: 11807275 [TBL] [Abstract][Full Text] [Related]
10. The initial step in the archaeal aspartate biosynthetic pathway catalyzed by a monofunctional aspartokinase. Faehnle CR; Liu X; Pavlovsky A; Viola RE Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Oct; 62(Pt 10):962-6. PubMed ID: 17012784 [TBL] [Abstract][Full Text] [Related]
11. Studies on the kinetic mechanism of lysine-sensitive aspartokinase. Shaw JF; Smith WG J Biol Chem; 1977 Aug; 252(15):5304-9. PubMed ID: 18460 [No Abstract] [Full Text] [Related]
12. Small molecule functional discrimination of the kinases required for the microbial synthesis of threonine and isoleucine. Bareich D; Koteva K; Nazi I; Wright GD Bioorg Med Chem; 2004 Feb; 12(4):807-15. PubMed ID: 14759741 [TBL] [Abstract][Full Text] [Related]
13. Homoserine kinase of Escherichia coli: kinetic mechanism and inhibition by L-aspartate semialdehyde. Shames SL; Wedler FC Arch Biochem Biophys; 1984 Dec; 235(2):359-70. PubMed ID: 6097184 [TBL] [Abstract][Full Text] [Related]
14. L-aspartase from Escherichia coli: substrate specificity and role of divalent metal ions. Falzone CJ; Karsten WE; Conley JD; Viola RE Biochemistry; 1988 Dec; 27(26):9089-93. PubMed ID: 2853974 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence energy transfer between heterologous active sites of affinity-labeled aspartokinase of Escherichia coli. Wright K; Takahashi M Biochemistry; 1977 Apr; 16(8):1548-54. PubMed ID: 192266 [TBL] [Abstract][Full Text] [Related]
16. Threonine inhibition of the aspartokinase--homoserine dehydrogenase I of Escherichia coli. A slow transient and cooperativity of inhibition of the aspartokinase activity. Bearer CF; Neet KE Biochemistry; 1978 Aug; 17(17):3523-30. PubMed ID: 28752 [No Abstract] [Full Text] [Related]
17. Simultaneous in vitro assay of the first four enzymes in the fungal aspartate pathway identifies a new class of aspartate kinase inhibitor. Bareich DC; Nazi I; Wright GD Chem Biol; 2003 Oct; 10(10):967-73. PubMed ID: 14583263 [No Abstract] [Full Text] [Related]
18. Effects of replacement of active site residue glutamine 231 on activity and allosteric properties of aspartate transcarbamoylase. Peterson CB; Burman DL; Schachman HK Biochemistry; 1992 Sep; 31(36):8508-15. PubMed ID: 1390636 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis, and bioactivity of novel inhibitors of E. coli aspartate transcarbamoylase. Eldo J; Heng S; Kantrowitz ER Bioorg Med Chem Lett; 2007 Apr; 17(7):2086-90. PubMed ID: 17336518 [TBL] [Abstract][Full Text] [Related]
20. The structural basis for allosteric inhibition of a threonine-sensitive aspartokinase. Liu X; Pavlovsky AG; Viola RE J Biol Chem; 2008 Jun; 283(23):16216-25. PubMed ID: 18334478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]