BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17319656)

  • 21. Self-assembled fluorescent hexaazatriphenylenes that act as a light-harvesting antenna.
    Ishi-i T; Murakami K; Imai Y; Mataka S
    J Org Chem; 2006 Jul; 71(15):5752-60. PubMed ID: 16839159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biologically inspired strategy for programmed assembly of viral building blocks with controlled dimensions.
    Rego JM; Lee JH; Lee DH; Yi H
    Biotechnol J; 2013 Feb; 8(2):237-46. PubMed ID: 22730384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dramatic thermal stability of virus-polymer conjugates in hydrophobic solvents.
    Holder PG; Finley DT; Stephanopoulos N; Walton R; Clark DS; Francis MB
    Langmuir; 2010 Nov; 26(22):17383-8. PubMed ID: 20964388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-Based Model for Energy Transfer between Photosynthetic Light-Harvesting Complexes Is Constructed Using a Direct Protein-Protein Conjugation Strategy.
    Bischoff AJ; Hamerlynck LM; Li AJ; Roberts TD; Ginsberg NS; Francis MB
    J Am Chem Soc; 2023 Jul; 145(29):15827-15837. PubMed ID: 37438911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulating Excited-State Dynamics of Individual Light-Harvesting Chromophores through Restricted Motions in a Hydrated Nanoscale Protein Cavity.
    Noriega R; Finley DT; Haberstroh J; Geissler PL; Francis MB; Ginsberg NS
    J Phys Chem B; 2015 Jun; 119(23):6963-73. PubMed ID: 26035585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA-based supramolecular artificial light harvesting complexes.
    Kumar CV; Duff MR
    J Am Chem Soc; 2009 Nov; 131(44):16024-6. PubMed ID: 19845378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes.
    Royston E; Ghosh A; Kofinas P; Harris MT; Culver JN
    Langmuir; 2008 Feb; 24(3):906-12. PubMed ID: 18154364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Mechanics Simulations and Improved Tight-Binding Hamiltonians for Artificial Light Harvesting Systems: Predicting Geometric Distributions, Disorder, and Spectroscopy of Chromophores in a Protein Environment.
    Lee J; Lee D; Kocherzhenko AA; Greenman L; Finley DT; Francis MB; Whaley KB
    J Phys Chem B; 2018 Dec; 122(51):12292-12301. PubMed ID: 30458617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confined chromophores in tobacco mosaic virus to mimic green fluorescent protein.
    Zhou Q; Wu F; Wu M; Tian Y; Niu Z
    Chem Commun (Camb); 2015 Oct; 51(82):15122-4. PubMed ID: 26323209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical regulation of the self-assembly of tobacco mosaic virus coat protein.
    Kegel WK; van der Schoot P
    Biophys J; 2006 Aug; 91(4):1501-12. PubMed ID: 16731551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on nanocomposite construction based on the multi-functional biotemplate self-assembled by the recombinant TMGMV coat protein for potential biomedical applications.
    Song L; Wang S; Wang H; Zhang H; Cong H; Jiang X; Tien P
    J Mater Sci Mater Med; 2015 Feb; 26(2):97. PubMed ID: 25652772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Assembled Light-Harvesting System from Chromophores in Lipid Vesicles.
    Sahin T; Harris MA; Vairaprakash P; Niedzwiedzki DM; Subramanian V; Shreve AP; Bocian DF; Holten D; Lindsey JS
    J Phys Chem B; 2015 Aug; 119(32):10231-43. PubMed ID: 26230425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembled zinc chlorin rod antennae powered by peripheral light-harvesting chromophores.
    Röger C; Miloslavina Y; Brunner D; Holzwarth AR; Würthner F
    J Am Chem Soc; 2008 May; 130(18):5929-39. PubMed ID: 18393414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Construction of GPx active centers on natural protein nanodisk/nanotube: a new way to develop artificial nanoenzyme.
    Hou C; Luo Q; Liu J; Miao L; Zhang C; Gao Y; Zhang X; Xu J; Dong Z; Liu J
    ACS Nano; 2012 Oct; 6(10):8692-701. PubMed ID: 22992167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient energy transfer within self-assembling peptide fibers: a route to light-harvesting nanomaterials.
    Channon KJ; Devlin GL; MacPhee CE
    J Am Chem Soc; 2009 Sep; 131(35):12520-1. PubMed ID: 19678637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pyrene-stacked nanostructures constructed in the recombinant tobacco mosaic virus rod scaffold.
    Endo M; Wang H; Fujitsuka M; Majima T
    Chemistry; 2006 May; 12(14):3735-40. PubMed ID: 16506261
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Static Disorder has Dynamic Impact on Energy Transport in Biomimetic Light-Harvesting Complexes.
    Hamerlynck LM; Bischoff AJ; Rogers JR; Roberts TD; Dai J; Geissler PL; Francis MB; Ginsberg NS
    J Phys Chem B; 2022 Oct; 126(40):7981-7991. PubMed ID: 36191182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System.
    Sun H; Zhang X; Miao L; Zhao L; Luo Q; Xu J; Liu J
    ACS Nano; 2016 Jan; 10(1):421-8. PubMed ID: 26634314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carboxylate-directed in vivo assembly of virus-like nanorods and tubes for the display of functional peptides and residues.
    Brown AD; Naves L; Wang X; Ghodssi R; Culver JN
    Biomacromolecules; 2013 Sep; 14(9):3123-9. PubMed ID: 23883304
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Assembly of Protein Crystals with Different Crystal Structures Using Tobacco Mosaic Virus Coat Protein as a Building Block.
    Zhang J; Wang X; Zhou K; Chen G; Wang Q
    ACS Nano; 2018 Feb; 12(2):1673-1679. PubMed ID: 29350903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.