These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17319660)

  • 1. Compound I of nitric oxide synthase: the active site protonation state.
    Cho KB; Derat E; Shaik S
    J Am Chem Soc; 2007 Mar; 129(11):3182-8. PubMed ID: 17319660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First half-reaction mechanism of nitric oxide synthase: the role of proton and oxygen coupled electron transfer in the reaction by quantum mechanics/molecular mechanics.
    Cho KB; Carvajal MA; Shaik S
    J Phys Chem B; 2009 Jan; 113(1):336-46. PubMed ID: 19072325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the bound substrate in nitric oxide synthase protonated or neutral and what is the active oxidant that performs substrate hydroxylation?
    de Visser SP; Tan LS
    J Am Chem Soc; 2008 Oct; 130(39):12961-74. PubMed ID: 18774806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New features in the catalytic cycle of cytochrome P450 during the formation of compound I from compound 0.
    Kumar D; Hirao H; de Visser SP; Zheng J; Wang D; Thiel W; Shaik S
    J Phys Chem B; 2005 Oct; 109(42):19946-51. PubMed ID: 16853579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical calculations of the NHA bound nitric oxide synthase active site: O2 binding and implications for the catalytic mechanism.
    Cho KB; Gauld JW
    J Am Chem Soc; 2004 Aug; 126(33):10267-70. PubMed ID: 15315438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes.
    de Visser SP
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.
    Zheng J; Wang D; Thiel W; Shaik S
    J Am Chem Soc; 2006 Oct; 128(40):13204-15. PubMed ID: 17017800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Poulos-Kraut mechanism of Compound I formation in horseradish peroxidase: a QM/MM study.
    Derat E; Shaik S
    J Phys Chem B; 2006 Jun; 110(21):10526-33. PubMed ID: 16722763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of substrate, protein environment, and proximal ligand mutation on compound I and compound 0 of chloroperoxidase.
    Lai W; Chen H; Cho KB; Shaik S
    J Phys Chem A; 2009 Oct; 113(43):11763-71. PubMed ID: 19572690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How is the reactivity of cytochrome P450cam affected by Thr252X mutation? A QM/MM study for X = serine, valine, alanine, glycine.
    Altarsha M; Benighaus T; Kumar D; Thiel W
    J Am Chem Soc; 2009 Apr; 131(13):4755-63. PubMed ID: 19281168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What kinds of ferryl species exist for compound II of chloroperoxidase? A dialog of theory with experiment.
    Lai W; Chen H; Shaik S
    J Phys Chem B; 2009 Jun; 113(22):7912-7. PubMed ID: 19408918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QM/MM study of the second proton transfer in the catalytic cycle of the D251N mutant of cytochrome P450cam.
    Altarsha M; Wang D; Benighaus T; Kumar D; Thiel W
    J Phys Chem B; 2009 Jul; 113(28):9577-88. PubMed ID: 19537775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A density functional theory investigation on the mechanism of the second half-reaction of nitric oxide synthase.
    Robinet JJ; Cho KB; Gauld JW
    J Am Chem Soc; 2008 Mar; 130(11):3328-34. PubMed ID: 18293966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-shuffle mechanism of O-O activation for formation of a high-valent oxo-iron species of bleomycin.
    Kumar D; Hirao H; Shaik S; Kozlowski PM
    J Am Chem Soc; 2006 Dec; 128(50):16148-58. PubMed ID: 17165768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular oxygen activation and proton transfer mechanisms in lanosterol 14alpha-demethylase catalysis.
    Sen K; Hackett JC
    J Phys Chem B; 2009 Jun; 113(23):8170-82. PubMed ID: 19438188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound I in heme thiolate enzymes: a comparative QM/MM study.
    Cho KB; Hirao H; Chen H; Carvajal MA; Cohen S; Derat E; Thiel W; Shaik S
    J Phys Chem A; 2008 Dec; 112(50):13128-38. PubMed ID: 18850694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-frequency EPR and Mössbauer spectroscopic studies on freeze-quenched reaction intermediates of nitric oxide synthase.
    Jung C; Lendzian F; Schünemann V; Richter M; Böttger LH; Trautwein AX; Contzen J; Galander M; Ghosh DK; Barra AL
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S84-95. PubMed ID: 16235218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into ligand selectivity in nitric oxide synthase isoforms: a molecular dynamics study.
    Aparna V; Desiraju GR; Gopalakrishnan B
    J Mol Graph Model; 2007 Sep; 26(2):457-70. PubMed ID: 17350298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.