BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17319680)

  • 1. Dissolution behavior of soy proteins and effect of initial concentration.
    Lui DY; White ET; Litster JD
    J Agric Food Chem; 2007 Mar; 55(6):2467-73. PubMed ID: 17319680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of glycinin and beta-conglycinin subunits that contribute to the increased protein content of high-protein soybean lines.
    Krishnan HB; Natarajan SS; Mahmoud AA; Nelson RL
    J Agric Food Chem; 2007 Mar; 55(5):1839-45. PubMed ID: 17266327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH Shifting alters solubility characteristics and thermal stability of soy protein isolate and its globulin fractions in different pH, salt concentration, and temperature conditions.
    Jiang J; Xiong YL; Chen J
    J Agric Food Chem; 2010 Jul; 58(13):8035-42. PubMed ID: 20524657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein recovery in soymilk and various soluble fractions as a function of genotype differences, changes during heating, and homogenization.
    Malaki Nik A; Tosh SM; Poysa V; Woodrow L; Corredig M
    J Agric Food Chem; 2008 Nov; 56(22):10893-900. PubMed ID: 18942846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of dynamic high pressure homogenization on the aggregation state of soy protein.
    Keerati-U-Rai M; Corredig M
    J Agric Food Chem; 2009 May; 57(9):3556-62. PubMed ID: 19415926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0.
    Guo J; Yang XQ; He XT; Wu NN; Wang JM; Gu W; Zhang YY
    J Agric Food Chem; 2012 Apr; 60(14):3782-91. PubMed ID: 22429197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of storage proteins in wild (Glycine soja) and cultivated (Glycine max) soybean seeds using proteomic analysis.
    Natarajan SS; Xu C; Bae H; Caperna TJ; Garrett WM
    J Agric Food Chem; 2006 Apr; 54(8):3114-20. PubMed ID: 16608239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of β-conglycinin and glycinin subunits in the pH-shifting-induced structural and physicochemical changes of soy protein isolate.
    Jiang J; Xiong YL; Chen J
    J Food Sci; 2011 Mar; 76(2):C293-302. PubMed ID: 21535749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of glycinin and β-conglycinin on silica and cellulose: surface interactions as a function of denaturation, pH, and electrolytes.
    Salas C; Rojas OJ; Lucia LA; Hubbe MA; Genzer J
    Biomacromolecules; 2012 Feb; 13(2):387-96. PubMed ID: 22229657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin.
    Tang CH; Wang CS
    J Agric Food Chem; 2010 Oct; 58(20):11058-66. PubMed ID: 20919718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sorbed water on the thermal stability of soybean protein.
    Tsukada H; Takano K; Hattori M; Yoshida T; Kanuma S; Takahashi K
    Biosci Biotechnol Biochem; 2006 Sep; 70(9):2096-103. PubMed ID: 16960389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beta-conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro.
    Martinez-Villaluenga C; Bringe NA; Berhow MA; Gonzalez de Mejia E
    J Agric Food Chem; 2008 Nov; 56(22):10533-43. PubMed ID: 18947234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival of dietary antigens in the digestive tract of calves intolerant to soybean products.
    Sissons JW; Thurston SM
    Res Vet Sci; 1984 Sep; 37(2):242-6. PubMed ID: 6438746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-angle X-ray scattering study of the effect of pH and salts on 11S soy glycinin in the freeze-dried powder and solution states.
    Sokolova A; Kealley CS; Hanley T; Rekas A; Gilbert EP
    J Agric Food Chem; 2010 Jan; 58(2):967-74. PubMed ID: 20025226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast characterization of industrial soy protein isolates by direct analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Horneffer V; Foster TJ; Velikov KP
    J Agric Food Chem; 2007 Dec; 55(26):10505-8. PubMed ID: 18052236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubility of soy lipophilic proteins: comparison with other soy protein fractions.
    Sirison J; Matsumiya K; Samoto M; Hidaka H; Kouno M; Matsumura Y
    Biosci Biotechnol Biochem; 2017 Apr; 81(4):790-802. PubMed ID: 28300503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural rearrangement of ethanol-denatured soy proteins by high hydrostatic pressure treatment.
    Wang JM; Yang XQ; Yin SW; Zhang Y; Tang CH; Li BS; Yuan DB; Guo J
    J Agric Food Chem; 2011 Jul; 59(13):7324-32. PubMed ID: 21609024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of beta-conglycinin in soybean and soybean products using a sandwich enzyme-linked immunosorbent assay.
    Hei W; Li Z; Ma X; He P
    Anal Chim Acta; 2012 Jul; 734():62-8. PubMed ID: 22704473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved fractionation of glycinin and beta-conglycinin and partitioning of phytochemicals.
    Rickert DA; Johnson LA; Murphy PA
    J Agric Food Chem; 2004 Mar; 52(6):1726-34. PubMed ID: 15030237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat-Induced changes occurring in oil/water emulsions stabilized by soy glycinin and β-conglycinin.
    Keerati-u-rai M; Corredig M
    J Agric Food Chem; 2010 Aug; 58(16):9171-80. PubMed ID: 23654241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.