BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 17319956)

  • 1. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins.
    Koumandou VL; Dacks JB; Coulson RM; Field MC
    BMC Evol Biol; 2007 Feb; 7():29. PubMed ID: 17319956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular evolutionary analysis of the SM and SNARE vesicle fusion machinery in ciliates shows concurrent expansions in late secretory machinery.
    Kaur H; Richardson E; Kamra K; Dacks JB
    J Eukaryot Microbiol; 2022 Jul; 69(4):e12919. PubMed ID: 35460134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evolutionary perspective on eukaryotic membrane trafficking.
    Gurkan C; Koulov AV; Balch WE
    Adv Exp Med Biol; 2007; 607():73-83. PubMed ID: 17977460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution.
    Dacks JB; Poon PP; Field MC
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):588-93. PubMed ID: 18182495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode.
    Dacks JB; Field MC
    J Cell Sci; 2007 Sep; 120(Pt 17):2977-85. PubMed ID: 17715154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tethering the assembly of SNARE complexes.
    Hong W; Lev S
    Trends Cell Biol; 2014 Jan; 24(1):35-43. PubMed ID: 24119662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are all multisubunit tethering complexes bona fide tethers?
    Brunet S; Sacher M
    Traffic; 2014 Nov; 15(11):1282-7. PubMed ID: 25048641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity in structure and function of tethering complexes: evidence for different mechanisms in vesicular transport regulation.
    Kümmel D; Heinemann U
    Curr Protein Pept Sci; 2008 Apr; 9(2):197-209. PubMed ID: 18393888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote homology between Munc13 MUN domain and vesicle tethering complexes.
    Pei J; Ma C; Rizo J; Grishin NV
    J Mol Biol; 2009 Aug; 391(3):509-17. PubMed ID: 19563813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa.
    Klinger CM; Klute MJ; Dacks JB
    PLoS One; 2013; 8(9):e76278. PubMed ID: 24086721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of late steps in exocytosis: conservation and specialization of the exocyst complex.
    Boehm C; Field MC
    Wellcome Open Res; 2019; 4():112. PubMed ID: 31633057
    [No Abstract]   [Full Text] [Related]  

  • 12. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged?
    Rizo J; Südhof TC
    Annu Rev Cell Dev Biol; 2012; 28():279-308. PubMed ID: 23057743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of the Sec1/Munc18-family proteins VPS-33.2 and VPS-33.1 bypasses a block in endosome maturation in Caenorhabditis elegans.
    Solinger JA; Spang A
    Mol Biol Cell; 2014 Dec; 25(24):3909-25. PubMed ID: 25273556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel syntaxin gene sequences from Giardia, Trypanosoma and algae: implications for the ancient evolution of the eukaryotic endomembrane system.
    Dacks JB; Doolittle WF
    J Cell Sci; 2002 Apr; 115(Pt 8):1635-42. PubMed ID: 11950882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins.
    Shen J; Tareste DC; Paumet F; Rothman JE; Melia TJ
    Cell; 2007 Jan; 128(1):183-95. PubMed ID: 17218264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longin-like folds identified in CHiPS and DUF254 proteins: vesicle trafficking complexes conserved in eukaryotic evolution.
    Kinch LN; Grishin NV
    Protein Sci; 2006 Nov; 15(11):2669-74. PubMed ID: 17075139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes.
    Koonin EV; Fedorova ND; Jackson JD; Jacobs AR; Krylov DM; Makarova KS; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Rogozin IB; Smirnov S; Sorokin AV; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    Genome Biol; 2004; 5(2):R7. PubMed ID: 14759257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes.
    Laufman O; Hong W; Lev S
    J Cell Sci; 2013 Mar; 126(Pt 6):1506-16. PubMed ID: 23378023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core proteins of the secretory machinery.
    Lang T; Jahn R
    Handb Exp Pharmacol; 2008; (184):107-27. PubMed ID: 18064413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.