These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 17320123)
1. Oxidative coupling of the pyrogallol B-ring with a galloyl group during enzymatic oxidation of epigallocatechin 3-O-gallate. Li Y; Tanaka T; Kouno I Phytochemistry; 2007 Apr; 68(7):1081-8. PubMed ID: 17320123 [TBL] [Abstract][Full Text] [Related]
2. A novel black tea pigment and two new oxidation products of epigallocatechin-3-O-gallate. Tanaka T; Matsuo Y; Kouno I J Agric Food Chem; 2005 Sep; 53(19):7571-8. PubMed ID: 16159188 [TBL] [Abstract][Full Text] [Related]
3. Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins. Tanaka T; Mine C; Watarumi S; Fujioka T; Mihashi K; Zhang YJ; Kouno I J Nat Prod; 2002 Nov; 65(11):1582-7. PubMed ID: 12444680 [TBL] [Abstract][Full Text] [Related]
4. Three New Oxidation Products Produced from Epigallocatechin-3- O-gallate and Epicatechin-3-O-gallate. Li Y; Matsuo Y; Saito Y; Tanaka T Nat Prod Commun; 2016 Feb; 11(2):189-92. PubMed ID: 27032198 [TBL] [Abstract][Full Text] [Related]
5. Reactive oxygen species scavenging activities and inhibition on DNA oxidative damage of dimeric compounds from the oxidation of (-)-epigallocatechin-3-O-gallate. Qi X Fitoterapia; 2010 Apr; 81(3):205-9. PubMed ID: 19751808 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic oxidation of gallocatechin and epigallocatechin: effects of C-ring configuration on the reaction products. Matsuo Y; Yamada Y; Tanaka T; Kouno I Phytochemistry; 2008 Dec; 69(18):3054-61. PubMed ID: 17888464 [TBL] [Abstract][Full Text] [Related]
7. Increase of theaflavin gallates and thearubigins by acceleration of catechin oxidation in a new fermented tea product obtained by the tea-rolling processing of loquat ( Eriobotrya japonica ) and green tea leaves. Tanaka T; Miyata Y; Tamaya K; Kusano R; Matsuo Y; Tamaru S; Tanaka K; Matsui T; Maeda M; Kouno I J Agric Food Chem; 2009 Jul; 57(13):5816-22. PubMed ID: 19507893 [TBL] [Abstract][Full Text] [Related]
8. HPLC analysis of naturally occurring methylated catechins, 3' '- and 4' '-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. Chiu FL; Lin JK J Agric Food Chem; 2005 Sep; 53(18):7035-42. PubMed ID: 16131108 [TBL] [Abstract][Full Text] [Related]
9. Epimerization of tea catechins and O-methylated derivatives of (-)-epigallocatechin-3-O-gallate: relationship between epimerization and chemical structure. Suzuki M; Sano M; Yoshida R; Degawa M; Miyase T; Maeda-Yamamoto M J Agric Food Chem; 2003 Jan; 51(2):510-4. PubMed ID: 12517118 [TBL] [Abstract][Full Text] [Related]
10. Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea. Munoz-Munoz JL; García-Molina F; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN J Agric Food Chem; 2008 Oct; 56(19):9215-24. PubMed ID: 18788750 [TBL] [Abstract][Full Text] [Related]
11. Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation. Kusano R; Tanaka T; Matsuo Y; Kouno I Chem Pharm Bull (Tokyo); 2007 Dec; 55(12):1768-72. PubMed ID: 18057757 [TBL] [Abstract][Full Text] [Related]
12. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin. Ishii T; Mori T; Ichikawa T; Kaku M; Kusaka K; Uekusa Y; Akagawa M; Aihara Y; Furuta T; Wakimoto T; Kan T; Nakayama T Bioorg Med Chem; 2010 Jul; 18(14):4892-6. PubMed ID: 20598557 [TBL] [Abstract][Full Text] [Related]
13. Stereochemistry of the Black Tea Pigments Theacitrins A and C. Matsuo Y; Okuda K; Morikawa H; Oowatashi R; Saito Y; Tanaka T J Nat Prod; 2016 Jan; 79(1):189-95. PubMed ID: 26689950 [TBL] [Abstract][Full Text] [Related]
14. Solid-state NMR analysis of the orientation and dynamics of epigallocatechin gallate, a green tea polyphenol, incorporated into lipid bilayers. Kajiya K; Kumazawa S; Naito A; Nakayama T Magn Reson Chem; 2008 Feb; 46(2):174-7. PubMed ID: 18098154 [TBL] [Abstract][Full Text] [Related]
15. The acid-promoted reaction of the green tea polyphenol epigallocatechin gallate with nitrite ions. Panzella L; Manini P; Napolitano A; d'Ischia M Chem Res Toxicol; 2005 Apr; 18(4):722-9. PubMed ID: 15833032 [TBL] [Abstract][Full Text] [Related]
16. Oligomerization Mechanisms of Tea Catechins Involved in the Production of Black Tea Thearubigins. Hashiguchi K; Teramoto S; Katayama K; Matsuo Y; Saito Y; Tanaka T J Agric Food Chem; 2023 Oct; 71(41):15319-15330. PubMed ID: 37812808 [TBL] [Abstract][Full Text] [Related]
17. Investigation of processes in black tea manufacture through model fermentation (oxidation) experiments. Stodt UW; Blauth N; Niemann S; Stark J; Pawar V; Jayaraman S; Koek J; Engelhardt UH J Agric Food Chem; 2014 Aug; 62(31):7854-61. PubMed ID: 25051300 [TBL] [Abstract][Full Text] [Related]
18. Separation of proanthocyanidins isolated from tea leaves using high-speed counter-current chromatography. Savitri Kumar N; Maduwantha B Wijekoon WM; Kumar V; Nimal Punyasiri PA; Sarath B Abeysinghe I J Chromatogr A; 2009 May; 1216(19):4295-302. PubMed ID: 19136115 [TBL] [Abstract][Full Text] [Related]
19. Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Kuhnert N; Drynan JW; Obuchowicz J; Clifford MN; Witt M Rapid Commun Mass Spectrom; 2010 Dec; 24(23):3387-404. PubMed ID: 21072794 [TBL] [Abstract][Full Text] [Related]
20. Effects of folate cycle disruption by the green tea polyphenol epigallocatechin-3-gallate. Navarro-Perán E; Cabezas-Herrera J; Campo LS; Rodríguez-López JN Int J Biochem Cell Biol; 2007; 39(12):2215-25. PubMed ID: 17683969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]