BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17320283)

  • 1. Chemical modification of jute fibers for the production of green-composites.
    Corrales F; Vilaseca F; Llop M; Gironès J; Méndez JA; Mutjè P
    J Hazard Mater; 2007 Jun; 144(3):730-5. PubMed ID: 17320283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers.
    Megiatto JD; Oliveira FB; Rosa DS; Gardrat C; Castellan A; Frollini E
    Macromol Biosci; 2007 Sep; 7(9-10):1121-31. PubMed ID: 17676656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.
    Pommet M; Juntaro J; Heng JY; Mantalaris A; Lee AF; Wilson K; Kalinka G; Shaffer MS; Bismarck A
    Biomacromolecules; 2008 Jun; 9(6):1643-51. PubMed ID: 18491942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate.
    Siqueira G; Bras J; Dufresne A
    Langmuir; 2010 Jan; 26(1):402-11. PubMed ID: 19921797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements.
    Pasquini D; Belgacem MN; Gandini A; Curvelo AA
    J Colloid Interface Sci; 2006 Mar; 295(1):79-83. PubMed ID: 16125715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.
    Trindade WG; Hoareau W; Megiatto JD; Razera IA; Castellan A; Frollini E
    Biomacromolecules; 2005; 6(5):2485-96. PubMed ID: 16153084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for determining reactive hydroxyl groups in natural fibers: application to ramie fiber and its modification.
    He L; Li X; Li W; Yuan J; Zhou H
    Carbohydr Res; 2012 Feb; 348():95-8. PubMed ID: 22099251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bi-phobic cellulose fibers derivatives via surface trifluoropropanoylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    Langmuir; 2007 Oct; 23(21):10801-6. PubMed ID: 17854212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A
    J Colloid Interface Sci; 2006 Sep; 301(1):333-6. PubMed ID: 16777121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the cellulosic component of hemp fibers using sulfonic acid derivatives: Surface and thermal characterization.
    George M; Mussone PG; Bressler DC
    Carbohydr Polym; 2015 Dec; 134():230-9. PubMed ID: 26428120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graft copolymers of natural fibers for green composites.
    Thakur VK; Thakur MK; Gupta RK
    Carbohydr Polym; 2014 Apr; 104():87-93. PubMed ID: 24607164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers.
    Braun B; Dorgan JR
    Biomacromolecules; 2009 Feb; 10(2):334-41. PubMed ID: 19102697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic Hydrophobic Modification of Jute Fibers via Grafting to Reinforce Composites.
    Liu R; Dong A; Fan X; Yu Y; Yuan J; Wang P; Wang Q; Cavaco-Paulo A
    Appl Biochem Biotechnol; 2016 Apr; 178(8):1612-29. PubMed ID: 26754422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers.
    Gopalan Nair K; Dufresne A; Gandini A; Belgacem MN
    Biomacromolecules; 2003; 4(6):1835-42. PubMed ID: 14606916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of polarized spectroscopy as a tool for examining the microstructure of cellulosic textile fibers.
    Garside P; Wyeth P
    Appl Spectrosc; 2007 May; 61(5):523-9. PubMed ID: 17555622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface acylation of cellulose whiskers by drying aqueous emulsion.
    Yuan H; Nishiyama Y; Wada M; Kuga S
    Biomacromolecules; 2006 Mar; 7(3):696-700. PubMed ID: 16529402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion.
    Ashori A; Babaee M; Jonoobi M; Hamzeh Y
    Carbohydr Polym; 2014 Feb; 102():369-75. PubMed ID: 24507293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers.
    Cunha AG; Freire CS; Silvestre AJ; Neto CP; Gandini A; Orblin E; Fardim P
    J Colloid Interface Sci; 2007 Dec; 316(2):360-6. PubMed ID: 17889889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mild and modular surface modification of cellulose via hetero Diels-Alder (HDA) cycloaddition.
    Goldmann AS; Tischer T; Barner L; Bruns M; Barner-Kowollik C
    Biomacromolecules; 2011 Apr; 12(4):1137-45. PubMed ID: 21366268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.