These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

635 related articles for article (PubMed ID: 17320367)

  • 21. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability.
    Guerra P; Ahumada I; Carrasco A
    Chemosphere; 2007 Aug; 68(11):2021-7. PubMed ID: 17418882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat.
    Kumpiene J; Ore S; Lagerkvist A; Maurice C
    Environ Pollut; 2007 Jan; 145(1):365-73. PubMed ID: 16540220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China.
    Dong D; Zhao X; Hua X; Liu J; Gao M
    J Hazard Mater; 2009 Mar; 162(2-3):1261-8. PubMed ID: 18650011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mobility of Pb, Cu, and Zn in the phosphorus-amended contaminated soils under simulated landfill and rainfall conditions.
    Cao X; Liang Y; Zhao L; Le H
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):5913-21. PubMed ID: 23263754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).
    Chaturvedi PK; Seth CS; Misra V
    Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids.
    Kantar C; Cetin Z; Demiray H
    J Hazard Mater; 2008 Nov; 159(2-3):287-93. PubMed ID: 18387738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.
    Navarro A; Cardellach E; Corbella M
    J Hazard Mater; 2011 Feb; 186(2-3):1576-85. PubMed ID: 21190796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach.
    Kierczak J; Neel C; Aleksander-Kwaterczak U; Helios-Rybicka E; Bril H; Puziewicz J
    Chemosphere; 2008 Oct; 73(5):776-84. PubMed ID: 18649917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic speciation in multiple metal environments II. Micro-spectroscopic investigation of a CCA contaminated soil.
    Gräfe M; Tappero RV; Marcus MA; Sparks DL
    J Colloid Interface Sci; 2008 May; 321(1):1-20. PubMed ID: 18321525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salinity increases mobility of heavy metals in soils.
    Acosta JA; Jansen B; Kalbitz K; Faz A; Martínez-Martínez S
    Chemosphere; 2011 Nov; 85(8):1318-24. PubMed ID: 21862104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Association of individual soil mineral constituents and heavy metals as studied by sorption experiments and analytical electron microscopy analyses.
    Sipos P; Németh T; Kis VK; Mohai I
    J Hazard Mater; 2009 Sep; 168(2-3):1512-20. PubMed ID: 19349113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of lead, copper, and zinc retention by phosphate rock.
    Cao X; Ma LQ; Rhue DR; Appel CS
    Environ Pollut; 2004 Oct; 131(3):435-44. PubMed ID: 15261407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.
    Nehrenheim E; Gustafsson JP
    Bioresour Technol; 2008 Apr; 99(6):1571-7. PubMed ID: 17532623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by a Fibric Histosol and its organo-mineral fraction.
    Covelo EF; Vega FA; Andrade ML
    J Hazard Mater; 2008 Nov; 159(2-3):342-7. PubMed ID: 18384955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal sorption and desorption capacity of soils containing endogenous contaminants.
    Covelo EF; Vega FA; Andrade ML
    J Hazard Mater; 2007 May; 143(1-2):419-30. PubMed ID: 17092646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols.
    Vega FA; Covelo EF; Andrade ML
    J Hazard Mater; 2009 Sep; 169(1-3):36-45. PubMed ID: 19368998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.