BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17320764)

  • 1. Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry.
    Sethuraman M; Clavreul N; Huang H; McComb ME; Costello CE; Cohen RA
    Free Radic Biol Med; 2007 Mar; 42(6):823-9. PubMed ID: 17320764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells.
    Clavreul N; Adachi T; Pimental DR; Ido Y; Schöneich C; Cohen RA
    FASEB J; 2006 Mar; 20(3):518-20. PubMed ID: 16415107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detailed map of oxidative post-translational modifications of human p21ras using Fourier transform mass spectrometry.
    Zhao C; Sethuraman M; Clavreul N; Kaur P; Cohen RA; O'Connor PB
    Anal Chem; 2006 Jul; 78(14):5134-42. PubMed ID: 16841939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.
    Harris C; Shuster DZ; Roman Gomez R; Sant KE; Reed MS; Pohl J; Hansen JM
    Free Radic Biol Med; 2013 Oct; 63():325-37. PubMed ID: 23736079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase.
    Viner RI; Williams TD; Schöneich C
    Biochemistry; 1999 Sep; 38(38):12408-15. PubMed ID: 10493809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.
    Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A
    J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry.
    Kozarova A; Sliskovic I; Mutus B; Simon ES; Andrews PC; Vacratsis PO
    J Am Soc Mass Spectrom; 2007 Feb; 18(2):260-9. PubMed ID: 17074504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C; Leichert LI
    Methods Mol Biol; 2012; 893():387-403. PubMed ID: 22665313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathionylation of trypanosomal thiol redox proteins.
    Melchers J; Dirdjaja N; Ruppert T; Krauth-Siegel RL
    J Biol Chem; 2007 Mar; 282(12):8678-94. PubMed ID: 17242409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilising cysteinyl thiol oxidation and nitrosation for proteomic analysis.
    Ratnayake S; Dias IH; Lattman E; Griffiths HR
    J Proteomics; 2013 Oct; 92():160-70. PubMed ID: 23796488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry.
    García-Santamarina S; Boronat S; Domènech A; Ayté J; Molina H; Hidalgo E
    Nat Protoc; 2014 May; 9(5):1131-45. PubMed ID: 24743420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags.
    Hägglund P; Bunkenborg J; Maeda K; Svensson B
    J Proteome Res; 2008 Dec; 7(12):5270-6. PubMed ID: 19367707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox proteomics: identification of oxidatively modified proteins.
    Ghezzi P; Bonetto V
    Proteomics; 2003 Jul; 3(7):1145-53. PubMed ID: 12872215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase.
    Chen CL; Zhang L; Yeh A; Chen CA; Green-Church KB; Zweier JL; Chen YR
    Biochemistry; 2007 May; 46(19):5754-65. PubMed ID: 17444656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope-coded affinity tag approach to identify and quantify oxidant-sensitive protein thiols.
    Sethuraman M; McComb ME; Heibeck T; Costello CE; Cohen RA
    Mol Cell Proteomics; 2004 Mar; 3(3):273-8. PubMed ID: 14726493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive nitrogen oxide species-induced post-translational modifications in human hemoglobin and the association with cigarette smoking.
    Chen HJ; Chen YC
    Anal Chem; 2012 Sep; 84(18):7881-90. PubMed ID: 22958097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications.
    Ying J; Clavreul N; Sethuraman M; Adachi T; Cohen RA
    Free Radic Biol Med; 2007 Oct; 43(8):1099-108. PubMed ID: 17854705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Isotope-Coded Affinity Tag Method for Quantitative Protein Profile Comparison and Relative Quantitation of Cysteine Redox Modifications.
    Chan JCY; Zhou L; Chan ECY
    Curr Protoc Protein Sci; 2015 Nov; 82():23.2.1-23.2.19. PubMed ID: 26521713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.