BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17320995)

  • 1. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus.
    Wang Y; Li Y; Pei X; Yu L; Feng Y
    J Biotechnol; 2007 May; 129(3):510-5. PubMed ID: 17320995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome shuffling enhanced L-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus.
    Yu L; Pei X; Lei T; Wang Y; Feng Y
    J Biotechnol; 2008 Mar; 134(1-2):154-9. PubMed ID: 18289712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain improvement of Sporolactobacillus inulinus ATCC 15538 for acid tolerance and production of D-lactic acid by genome shuffling.
    Zheng H; Gong J; Chen T; Chen X; Zhao X
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1541-9. PubMed ID: 19777227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome sequence of Lactobacillus rhamnosus strain CASL, an efficient L-lactic acid producer from cheap substrate cassava.
    Yu B; Su F; Wang L; Zhao B; Qin J; Ma C; Xu P; Ma Y
    J Bacteriol; 2011 Dec; 193(24):7013-4. PubMed ID: 22123765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR.
    Zhao J; Li Y; Zhang C; Yao Z; Zhang L; Bie X; Lu F; Lu Z
    J Ind Microbiol Biotechnol; 2012 Jun; 39(6):889-96. PubMed ID: 22350068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome shuffling enhanced ε-poly-L-lysine production by improving glucose tolerance of Streptomyces graminearus.
    Li S; Li F; Chen XS; Wang L; Xu J; Tang L; Mao ZG
    Appl Biochem Biotechnol; 2012 Jan; 166(2):414-23. PubMed ID: 22083395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.
    Sun L; Lu Z; Li J; Sun F; Huang R
    Mol Genet Genomics; 2018 Feb; 293(1):265-276. PubMed ID: 29159508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction.
    Yin H; Ma Y; Deng Y; Xu Z; Liu J; Zhao J; Dong J; Yu J; Chang Z
    J Microbiol Methods; 2016 Aug; 127():188-192. PubMed ID: 27302037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae.
    Shi DJ; Wang CL; Wang KM
    J Ind Microbiol Biotechnol; 2009 Jan; 36(1):139-47. PubMed ID: 18846398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome shuffling of Lactobacillus for improved acid tolerance.
    Patnaik R; Louie S; Gavrilovic V; Perry K; Stemmer WP; Ryan CM; del Cardayré S
    Nat Biotechnol; 2002 Jul; 20(7):707-12. PubMed ID: 12089556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of L: -Lactic Acid Production under Glucose Feedback Controlled Culture by Lactobacillus rhamnosus.
    Li Z; Lu J; Zhao L; Xiao K; Tan T
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1762–7. PubMed ID: 20393886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production.
    Huang QG; Zeng BD; Liang L; Wu SG; Huang JZ
    World J Microbiol Biotechnol; 2018 Jul; 34(8):121. PubMed ID: 30039311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.
    Nancib A; Nancib N; Boubendir A; Boudrant J
    Braz J Microbiol; 2015; 46(3):893-902. PubMed ID: 26413076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactic acid fermentation in cell-recycle membrane bioreactor.
    Choudhury B; Swaminathan T
    Appl Biochem Biotechnol; 2006 Feb; 128(2):171-84. PubMed ID: 16484726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of L-lactic acid from cassava powder by Lactobacillus rhamnosus.
    Wang L; Zhao B; Liu B; Yang C; Yu B; Li Q; Ma C; Xu P; Ma Y
    Bioresour Technol; 2010 Oct; 101(20):7895-901. PubMed ID: 20627717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acid production on liquid distillery stillage by Lactobacillus rhamnosus immobilized onto zeolite.
    Djukić-Vuković AP; Mojović LV; Jokić BM; Nikolić SB; Pejin JD
    Bioresour Technol; 2013 May; 135():454-8. PubMed ID: 23186681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: An efficiency continuous cell-recycle fermentation system for lactic acid production.
    Zhao Z; Xie X; Wang Z; Tao Y; Niu X; Huang X; Liu L; Li Z
    J Biosci Bioeng; 2016 Jun; 121(6):645-651. PubMed ID: 26803707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii.
    Wang H; Zhang J; Wang X; Qi W; Dai Y
    Biotechnol Lett; 2012 Jan; 34(1):145-51. PubMed ID: 21972140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-lactic acid production by Lactobacillus rhamnosus ATCC 10863.
    Senedese AL; Maciel Filho R; Maciel MR
    ScientificWorldJournal; 2015; 2015():501029. PubMed ID: 25922852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of L(+)-lactic acid production from cassava wastewater by Lactobacillus rhamnosus B 103.
    Coelho LF; Bolner de Lima CJ; Bernardo MP; Alvarez GM; Contiero J
    J Sci Food Agric; 2010 Aug; 90(11):1944-50. PubMed ID: 20564419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.