BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1807 related articles for article (PubMed ID: 17321047)

  • 21. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil.
    Lim TT; Chui PC; Goh KH
    Chemosphere; 2005 Feb; 58(8):1031-40. PubMed ID: 15664611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils.
    Andrade MD; Prasher SO; Hendershot WH
    Environ Pollut; 2007 Jun; 147(3):781-90. PubMed ID: 17218042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.
    Begum ZA; Rahman IM; Tate Y; Sawai H; Maki T; Hasegawa H
    Chemosphere; 2012 Jun; 87(10):1161-70. PubMed ID: 22391046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil.
    Pociecha M; Lestan D
    J Hazard Mater; 2010 Feb; 174(1-3):670-8. PubMed ID: 19828243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The study of operating variables in soil washing with EDTA.
    Zou Z; Qiu R; Zhang W; Dong H; Zhao Z; Zhang T; Wei X; Cai X
    Environ Pollut; 2009 Jan; 157(1):229-36. PubMed ID: 18774633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the ability of organic acids and EDTA to enhance the phytoextraction of metals from a multi-metal contaminated soil.
    Kim SH; Lee IS
    Bull Environ Contam Toxicol; 2010 Feb; 84(2):255-9. PubMed ID: 19806283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of landscape gardening soil using undersized fraction from aged MSW by EDTA or citric acid coupled with humic acid: Effect assessment, properties, and optimization.
    Ye Z; Xiao Z; Gong Q; Peng Y; Li J; Zhao X; Zhang B; Wang S
    J Air Waste Manag Assoc; 2024 Mar; 74(3):192-205. PubMed ID: 38329723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil.
    Zhang T; Wei H; Yang XH; Xia B; Liu JM; Su CY; Qiu RL
    Chemosphere; 2014 Aug; 109():1-6. PubMed ID: 24873699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants.
    Xia W; Gao H; Wang X; Zhou C; Liu Y; Fan T; Wang X
    J Hazard Mater; 2009 May; 164(2-3):936-40. PubMed ID: 18838220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal operational conditions for the electrochemical regeneration of a soil washing EDTA solution.
    Cesaro R; Esposito G
    J Environ Monit; 2009 Feb; 11(2):307-13. PubMed ID: 19212586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids.
    Arwidsson Z; Elgh-Dalgren K; von Kronhelm T; Sjöberg R; Allard B; van Hees P
    J Hazard Mater; 2010 Jan; 173(1-3):697-704. PubMed ID: 19767142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities.
    Moutsatsou A; Gregou M; Matsas D; Protonotarios V
    Chemosphere; 2006 Jun; 63(10):1632-40. PubMed ID: 16325230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissolution kinetics of heavy metals in Dutch carbonate- and sulfide-rich freshwater sediments.
    Buykx SE; van den Hoop MA; Loch JP
    J Environ Qual; 2002; 31(2):573-80. PubMed ID: 11931449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid.
    Jean-Soro L; Bordas F; Bollinger JC
    Environ Pollut; 2012 May; 164():175-81. PubMed ID: 22361057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution.
    Pociecha M; Lestan D
    J Hazard Mater; 2009 Jun; 165(1-3):533-9. PubMed ID: 19022571
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.
    Zhang T; Liu JM; Huang XF; Xia B; Su CY; Luo GF; Xu YW; Wu YX; Mao ZW; Qiu RL
    J Hazard Mater; 2013 Nov; 262():464-71. PubMed ID: 24076482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 91.