BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 17321084)

  • 1. Controlled protein release from electrospun biodegradable fiber mesh composed of poly(epsilon-caprolactone) and poly(ethylene oxide).
    Kim TG; Lee DS; Park TG
    Int J Pharm; 2007 Jun; 338(1-2):276-83. PubMed ID: 17321084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules.
    Kim TG; Park TG
    Biotechnol Prog; 2006; 22(4):1108-13. PubMed ID: 16889387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micelles of poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization, stabilization, and controlled delivery of curcumin.
    Ma Z; Haddadi A; Molavi O; Lavasanifar A; Lai R; Samuel J
    J Biomed Mater Res A; 2008 Aug; 86(2):300-10. PubMed ID: 17957721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer.
    Shenoy DB; Amiji MM
    Int J Pharm; 2005 Apr; 293(1-2):261-70. PubMed ID: 15778064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A.
    Aliabadi HM; Mahmud A; Sharifabadi AD; Lavasanifar A
    J Control Release; 2005 May; 104(2):301-11. PubMed ID: 15907581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oridonin-loaded poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) copolymer nanoparticles: preparation, characterization, and antitumor activity on mice with transplanted hepatoma.
    Feng N; Wu P; Li Q; Mei Y; Shi S; Yu J; Xu J; Liu Y; Wang Y
    J Drug Target; 2008 Jul; 16(6):479-85. PubMed ID: 18604660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents.
    Jiang H; Hu Y; Li Y; Zhao P; Zhu K; Chen W
    J Control Release; 2005 Nov; 108(2-3):237-43. PubMed ID: 16153737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of proteins from degradable poly(ether-ester) multiblock copolymers.
    van Dijkhuizen-Radersma R; Métairie S; Roosma JR; de Groot K; Bezemer JM
    J Control Release; 2005 Jan; 101(1-3):175-86. PubMed ID: 15588903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation and controlled release of lysozyme from electrospun poly(epsilon-caprolactone)/poly(ethylene glycol) non-woven membranes by formation of lysozyme-oleate complexes.
    Li Y; Jiang H; Zhu K
    J Mater Sci Mater Med; 2008 Feb; 19(2):827-32. PubMed ID: 17665113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein release from electrospun nonwovens: improving the release characteristics through rational combination of polyester blend matrices with polidocanol.
    Puhl S; Ilko D; Li L; Holzgrabe U; Meinel L; Germershaus O
    Int J Pharm; 2014 Dec; 477(1-2):273-81. PubMed ID: 25445519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled synthesis and interface properties of new amphiphilic PCL-g-PEO copolymers.
    Rieger J; Dubois P; Jérôme R; Jérôme C
    Langmuir; 2006 Aug; 22(18):7471-9. PubMed ID: 16922523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of poly(ethylene oxide) on the release behaviors of poly(epsilon-caprolactone) microcapsules containing erythromycin.
    Park SJ; Kim KS; Kim SH
    Colloids Surf B Biointerfaces; 2005 Jul; 43(3-4):238-44. PubMed ID: 15979289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, characterization, effect of architecture on crystallization of biodegradable poly(epsilon-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof.
    Hua C; Dong CM
    J Biomed Mater Res A; 2007 Sep; 82(3):689-700. PubMed ID: 17323321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable and biocompatible thermosensitive polymer based injectable implant for controlled release of protein.
    Tang Y; Singh J
    Int J Pharm; 2009 Jan; 365(1-2):34-43. PubMed ID: 18786623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels.
    Hiemstra C; Zhong Z; Van Tomme SR; van Steenbergen MJ; Jacobs JJ; Otter WD; Hennink WE; Feijen J
    J Control Release; 2007 Jun; 119(3):320-7. PubMed ID: 17475360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(DL-lactic-co-glycolic acid) nanoparticles.
    Zweers ML; Engbers GH; Grijpma DW; Feijen J
    J Control Release; 2006 Sep; 114(3):317-24. PubMed ID: 16884807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterization of phosphoryl-choline-capped poly(epsilon-caprolactone)-poly(ethylene oxide) di-block co-polymers and its surface modification on polyurethanes.
    Zhang T; Song Z; Chen H; Yu X; Jiang Z
    J Biomater Sci Polym Ed; 2008; 19(4):509-24. PubMed ID: 18318962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(epsilon-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells.
    Xiong XB; Mahmud A; Uludağ H; Lavasanifar A
    Biomacromolecules; 2007 Mar; 8(3):874-84. PubMed ID: 17315946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCL-PEG-PCL) nanoparticles for honokiol delivery in vitro.
    Gou M; Zheng L; Peng X; Men K; Zheng X; Zeng S; Guo G; Luo F; Zhao X; Chen L; Wei Y; Qian Z
    Int J Pharm; 2009 Jun; 375(1-2):170-6. PubMed ID: 19427143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and evaluation of novel biodegradable microspheres based on poly(d,l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies.
    Mundargi RC; Srirangarajan S; Agnihotri SA; Patil SA; Ravindra S; Setty SB; Aminabhavi TM
    J Control Release; 2007 May; 119(1):59-68. PubMed ID: 17331611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.