BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 17321133)

  • 1. L-lactic acid production from apple pomace by sequential hydrolysis and fermentation.
    Gullón B; Yáñez R; Alonso JL; Parajó JC
    Bioresour Technol; 2008 Jan; 99(2):308-19. PubMed ID: 17321133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: a response surface methodology assessment.
    Gullón B; Garrote G; Alonso JL; Parajó JC
    J Agric Food Chem; 2007 Jul; 55(14):5580-7. PubMed ID: 17567032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submerged citric acid fermentation on orange peel autohydrolysate.
    Rivas B; Torrado A; Torre P; Converti A; Domínguez JM
    J Agric Food Chem; 2008 Apr; 56(7):2380-7. PubMed ID: 18321055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp.
    Patel MA; Ou MS; Ingram LO; Shanmugam KT
    Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic hydrolysis and fermentation of pretreated cashew apple bagasse with alkali and diluted sulfuric Acid for bioethanol production.
    Rocha MV; Rodrigues TH; de Macedo GR; Gonçalves LR
    Appl Biochem Biotechnol; 2009 May; 155(1-3):407-17. PubMed ID: 19031051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SSF production of lactic acid from cellulosic biosludges.
    Romaní A; Yáñez R; Garrote G; Alonso JL
    Bioresour Technol; 2008 Jul; 99(10):4247-54. PubMed ID: 17928224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693.
    Saha BC; Nakamura LK
    Biotechnol Bioeng; 2003 Jun; 82(7):864-71. PubMed ID: 12701154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients.
    Bustos G; Moldes AB; Cruz JM; Domínguez JM
    J Agric Food Chem; 2004 Feb; 52(4):801-8. PubMed ID: 14969534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus.
    Bustos G; Moldes AB; Cruz JM; Domínguez JM
    Biotechnol Prog; 2005; 21(3):793-8. PubMed ID: 15932258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of intermittent addition of cellulase for production of L-lactic acid from wastewater sludge by simultaneous saccharification and fermentation.
    Nakasaki K; Adachi T
    Biotechnol Bioeng; 2003 May; 82(3):263-70. PubMed ID: 12599252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of lactic acid and fructose from media with cane sugar using mutant of Lactobacillus delbrueckii NCIM 2365.
    Patil SS; Kadam SR; Patil SS; Bastawde KB; Khire JM; Gokhale DV
    Lett Appl Microbiol; 2006 Jul; 43(1):53-7. PubMed ID: 16834721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials.
    Wee YJ; Ryu HW
    Bioresour Technol; 2009 Sep; 100(18):4262-70. PubMed ID: 19394215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii.
    Mussatto SI; Fernandes M; Dragone G; Mancilha IM; Roberto IC
    Biotechnol Lett; 2007 Dec; 29(12):1973-6. PubMed ID: 17700998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus.
    Burgos-Rubio CN; Okos MR; Wankat PC
    Biotechnol Prog; 2000; 16(3):305-14. PubMed ID: 10835228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [L-lactic acid fermentation by immobilized Rhizopus oryzae in a three-phase fluidized-bed].
    Chen Y; Xia L; Cen P
    Wei Sheng Wu Xue Bao; 2000 Aug; 40(4):415-9. PubMed ID: 12548964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae.
    Park EY; Anh PN; Okuda N
    Bioresour Technol; 2004 May; 93(1):77-83. PubMed ID: 14987724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients.
    Lu Z; He F; Shi Y; Lu M; Yu L
    Bioresour Technol; 2010 May; 101(10):3642-8. PubMed ID: 20116239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic hydrolysis optimization to ethanol production by simultaneous saccharification and fermentation.
    Vásquez MP; da Silva JN; de Souza MB; Pereira N
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):141-53. PubMed ID: 18478383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactic acid production from agricultural resources as cheap raw materials.
    Oh H; Wee YJ; Yun JS; Ho Han S; Jung S; Ryu HW
    Bioresour Technol; 2005 Sep; 96(13):1492-8. PubMed ID: 15939277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethanol production from cashew apple bagasse: improvement of enzymatic hydrolysis by microwave-assisted alkali pretreatment.
    Rodrigues TH; Rocha MV; de Macedo GR; Gonçalves LR
    Appl Biochem Biotechnol; 2011 Jul; 164(6):929-43. PubMed ID: 21302146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.