BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 17321213)

  • 21. The temporal stability of arsenic concentrations in well water in western Nevada.
    Steinmaus CM; Yuan Y; Smith AH
    Environ Res; 2005 Oct; 99(2):164-8. PubMed ID: 16194666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial and temporal variations in arsenic exposure via drinking-water in northern Argentina.
    Concha G; Nermell B; Vahter M
    J Health Popul Nutr; 2006 Sep; 24(3):317-26. PubMed ID: 17366773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Risk assessment of atrazine polluted farmland and drinking water: a case study.
    Li Q; Luo Y; Song J; Wu L
    Bull Environ Contam Toxicol; 2007 Apr; 78(3-4):187-90. PubMed ID: 17436145
    [No Abstract]   [Full Text] [Related]  

  • 24. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan).
    Liu CW; Jang CS; Liao CM
    Sci Total Environ; 2004 Apr; 321(1-3):173-88. PubMed ID: 15050394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic contamination awareness among the rural residents in Bangladesh.
    Paul BK
    Soc Sci Med; 2004 Oct; 59(8):1741-55. PubMed ID: 15279930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment.
    Katsoyiannis IA; Hug SJ; Ammann A; Zikoudi A; Hatziliontos C
    Sci Total Environ; 2007 Sep; 383(1-3):128-40. PubMed ID: 17570466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Health risks from large-scale water pollution: trends in Central Asia.
    Törnqvist R; Jarsjö J; Karimov B
    Environ Int; 2011 Feb; 37(2):435-42. PubMed ID: 21131050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevalence of skin lesions and exposure to arsenic in drinking water in Iran.
    Mosaferi M; Yunesian M; Dastgiri S; Mesdaghinia A; Esmailnasab N
    Sci Total Environ; 2008 Feb; 390(1):69-76. PubMed ID: 17997470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of epigeic moss (Hypnum cupressiforme) and lichen (Cladonia rangiformis) as biomonitor species of atmospheric metal deposition.
    Coskun M; Steinnes E; Coskun M; Cayir A
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):1-5. PubMed ID: 18592121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of population exposure to air pollution by benzene.
    Tchepel O; Penedo A; Gomes M
    Int J Hyg Environ Health; 2007 May; 210(3-4):407-10. PubMed ID: 17321209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer.
    Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M
    Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic exposure through groundwater to the rural and urban population in the Allahabad-Kanpur track in the upper Ganga plain.
    Chakraborti D; Ghorai SK; Das B; Pal A; Nayak B; Shah BA
    J Environ Monit; 2009 Aug; 11(8):1455-9. PubMed ID: 19657527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arsenic speciation study in some spring waters of Guam, Western Pacific Ocean.
    Vuki M; Limtiaco J; Aube T; Emmanuel J; Denton G; Wood R
    Sci Total Environ; 2007 Jul; 379(2-3):176-9. PubMed ID: 17169404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental Arsenic Exposure and Urinary 8-OHdG in Arizona and Sonora.
    Burgess JL; Meza MM; Josyula AB; Poplin GS; Kopplin MJ; McClellen HE; Stürup S; Lantz RC
    Clin Toxicol (Phila); 2007; 45(5):490-8. PubMed ID: 17503254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Benzene in food and human environment].
    Jedra M; Starski A
    Rocz Panstw Zakl Hig; 2010; 61(1):7-12. PubMed ID: 20803894
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applying a health behavior theory to explore the influence of information and experience on arsenic risk representations, policy beliefs, and protective behavior.
    Severtson DJ; Baumann LC; Brown RL
    Risk Anal; 2006 Apr; 26(2):353-68. PubMed ID: 16573626
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using indicator kriging for the evaluation of arsenic potential contamination in an abandoned mining area (Portugal).
    Antunes IM; Albuquerque MT
    Sci Total Environ; 2013 Jan; 442():545-52. PubMed ID: 23220092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model.
    Lee JJ; Jang CS; Wang SW; Liu CW
    Sci Total Environ; 2007 Oct; 384(1-3):151-62. PubMed ID: 17628636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determinants of drinking arsenic-contaminated tubewell water in Bangladesh.
    Khan MM; Aklimunnessa K; Kabir M; Mori M
    Health Policy Plan; 2007 Sep; 22(5):335-43. PubMed ID: 17584808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ground water geochemistry of Ballia district, Uttar Pradesh, India and mechanism of arsenic release.
    Chauhan VS; Nickson RT; Chauhan D; Iyengar L; Sankararamakrishnan N
    Chemosphere; 2009 Mar; 75(1):83-91. PubMed ID: 19135229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.