These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1732126)

  • 1. Sugar absorption by the biliary ductular epithelium of the rat: evidence for two transport systems.
    Lira M; Schteingart CD; Steinbach JH; Lambert K; McRoberts JA; Hofmann AF
    Gastroenterology; 1992 Feb; 102(2):563-71. PubMed ID: 1732126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrahepatic bile ducts transport water in response to absorbed glucose.
    Masyuk AI; Masyuk TV; Tietz PS; Splinter PL; LaRusso NF
    Am J Physiol Cell Physiol; 2002 Sep; 283(3):C785-91. PubMed ID: 12176735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The histoautoradiographic localization of taurocholate in rat liver after bile duct ligation. Evidence for ongoing secretion and reabsorption processes.
    Buscher HP; Miltenberger C; MacNelly S; Gerok W
    J Hepatol; 1989 Mar; 8(2):181-91. PubMed ID: 2715621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of monosaccharides in kidney-cortex cells.
    Kleinzeller A; Kolínská J; Benes I
    Biochem J; 1967 Sep; 104(3):852-60. PubMed ID: 6049927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules.
    Alpini G; Lenzi R; Sarkozi L; Tavoloni N
    J Clin Invest; 1988 Feb; 81(2):569-78. PubMed ID: 2448343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperglycemia-induced cholestasis in the isolated perfused rat liver.
    Marin JJ; Bravo P; Perez Barriocanal F; el-Mir MY; Villanueva GR
    Hepatology; 1991 Jul; 14(1):184-91. PubMed ID: 2066067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatic clearance and biliary secretory rate maximum of taurocholate in the recirculating and single pass isolated perfused rat liver. Effects of the cholestatic agent, estradiol-17 beta-(beta-D-glucuronide).
    Vore M; Durham S; Yeh S; Ganguly T
    Biochem Pharmacol; 1991 Feb; 41(3):431-7. PubMed ID: 1994901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and molecular identification of sodium-dependent glucose transporter in normal rat cholangiocytes.
    Lazaridis KN; Pham L; Vroman B; de Groen PC; LaRusso NF
    Am J Physiol; 1997 May; 272(5 Pt 1):G1168-74. PubMed ID: 9176227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a sodium-dependent sugar transport in rat tracheal epithelium.
    Saumon G; Seigné E; Clérici C
    Biochim Biophys Acta; 1990 Apr; 1023(3):313-8. PubMed ID: 2334725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver. Possible roles of P-glycoprotein in biliary excretion of vincristine.
    Watanabe T; Miyauchi S; Sawada Y; Iga T; Hanano M; Inaba M; Sugiyama Y
    J Hepatol; 1992 Sep; 16(1-2):77-88. PubMed ID: 1362433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new rat bile ductular epithelial cell culture model characterized by the appearance of polarized bile ducts in vitro.
    Sirica AE; Gainey TW
    Hepatology; 1997 Sep; 26(3):537-49. PubMed ID: 9303480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Movements of monosaccharides between blood and tissues of vascularly perfused small intestine.
    Boyd CA; Parsons DS
    J Physiol; 1979 Feb; 287():371-91. PubMed ID: 430421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraluminal transport of hexoses in the proximal convolution of the rat kidney in situ.
    Ullrich KJ; Papavassiliou F
    Pflugers Arch; 1985 May; 404(2):150-6. PubMed ID: 3892475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bile ductular proliferation and altered leukotriene elimination in thioacetamide-induced fibrosis of rat liver.
    Müller D; Enderle GJ; Löw O; Dietze E; Krell H
    J Hepatol; 1996 Oct; 25(4):547-53. PubMed ID: 8912155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose reabsorption from bile. Evidence for a biliohepatic circulation.
    Guzelian P; Boyer JL
    J Clin Invest; 1974 Feb; 53(2):526-35. PubMed ID: 11344566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholestasis, altered junctional permeability, and inverse changes in sinusoidal and biliary glutathione release by vasopressin and epinephrine.
    Ballatori N; Truong AT
    Mol Pharmacol; 1990 Jul; 38(1):64-71. PubMed ID: 2115113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of the chicken proximal cecum hexose transport system.
    Ferrer R; Planas JM; Moretó M
    Pflugers Arch; 1986 Jul; 407(1):100-4. PubMed ID: 3737374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of glucose absorption in the rat jejunum: a novel action of alpha-D-glucosidase inhibitors.
    Hirsh AJ; Yao SY; Young JD; Cheeseman CI
    Gastroenterology; 1997 Jul; 113(1):205-11. PubMed ID: 9207279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of active ion transport in transalveolar water absorption: a study on isolated rat lung.
    Basset G; Crone C; Saumon G
    J Physiol; 1987 Mar; 384():311-24. PubMed ID: 3656149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminal glucose enhances transepithelial Na+ and fluid transports in rat lungs.
    Saumon G; Dreyfuss D
    Pflugers Arch; 1991 Feb; 417(6):571-6. PubMed ID: 1905397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.