These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 17321698)
1. A whole genome analysis of 5' regulatory regions of human genes for putative cis-acting modulators of nucleosome positioning. Ganapathi M; Singh GP; Sandhu KS; Brahmachari SK; Brahmachari V Gene; 2007 Apr; 391(1-2):242-51. PubMed ID: 17321698 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals. Halder K; Halder R; Chowdhury S Mol Biosyst; 2009 Dec; 5(12):1703-12. PubMed ID: 19587895 [TBL] [Abstract][Full Text] [Related]
4. Epigenetic regulation and nucleosome positioning in the human TATA-less IL-1 alpha promoter. van Rietschoten JG; Gal-Yam EN; Jeong S; Cortez CC; Verweij CL; Jones PA Genes Immun; 2008 Oct; 9(7):582-90. PubMed ID: 18615092 [TBL] [Abstract][Full Text] [Related]
5. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. Tanaka S; Livingstone-Zatchej M; Thoma F J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475 [TBL] [Abstract][Full Text] [Related]
6. Evidence for nucleosome depletion at active regulatory regions genome-wide. Lee CK; Shibata Y; Rao B; Strahl BD; Lieb JD Nat Genet; 2004 Aug; 36(8):900-5. PubMed ID: 15247917 [TBL] [Abstract][Full Text] [Related]
7. Composition-sensitive analysis of the human genome for regulatory signals. Kel-Margoulis OV; Tchekmenev D; Kel AE; Goessling E; Hornischer K; Lewicki-Potapov B; Wingender E In Silico Biol; 2003; 3(1-2):145-71. PubMed ID: 12954097 [TBL] [Abstract][Full Text] [Related]
8. Genome-scale identification of nucleosome positions in S. cerevisiae. Yuan GC; Liu YJ; Dion MF; Slack MD; Wu LF; Altschuler SJ; Rando OJ Science; 2005 Jul; 309(5734):626-30. PubMed ID: 15961632 [TBL] [Abstract][Full Text] [Related]
9. The upstream sequences of the HSP82 and HSC82 genes of Saccharomyces cerevisiae: regulatory elements and nucleosome positioning motifs. Erkine AM; Szent-Gyorgyi C; Simmons SF; Gross DS Yeast; 1995 May; 11(6):573-80. PubMed ID: 7645348 [TBL] [Abstract][Full Text] [Related]
11. Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Kodama Y; Nagaya S; Shinmyo A; Kato K Plant Cell Physiol; 2007 Mar; 48(3):459-70. PubMed ID: 17283013 [TBL] [Abstract][Full Text] [Related]
12. Inferring natural selection on fine-scale chromatin organization in yeast. Babbitt GA; Kim Y Mol Biol Evol; 2008 Aug; 25(8):1714-27. PubMed ID: 18515262 [TBL] [Abstract][Full Text] [Related]
13. In silico approaches reveal the potential for DNA sequence-dependent histone octamer affinity to influence chromatin structure in vivo. Fraser RM; Allan J; Simmen MW J Mol Biol; 2006 Dec; 364(4):582-98. PubMed ID: 17027853 [TBL] [Abstract][Full Text] [Related]
14. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Albert I; Mavrich TN; Tomsho LP; Qi J; Zanton SJ; Schuster SC; Pugh BF Nature; 2007 Mar; 446(7135):572-6. PubMed ID: 17392789 [TBL] [Abstract][Full Text] [Related]
15. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers. Drillon G; Audit B; Argoul F; Arneodo A J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930 [TBL] [Abstract][Full Text] [Related]
16. Discovering sequences with potential regulatory characteristics. Bina M; Wyss P; Lazarus SA; Shah SR; Ren W; Szpankowski W; Crawford GE; Park SP; Song XC Genomics; 2009 Apr; 93(4):314-22. PubMed ID: 19084590 [TBL] [Abstract][Full Text] [Related]