These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 17322566)
1. DNA polymerase V allows bypass of toxic guanine oxidation products in vivo. Neeley WL; Delaney S; Alekseyev YO; Jarosz DF; Delaney JC; Walker GC; Essigmann JM J Biol Chem; 2007 Apr; 282(17):12741-8. PubMed ID: 17322566 [TBL] [Abstract][Full Text] [Related]
2. In vivo bypass efficiencies and mutational signatures of the guanine oxidation products 2-aminoimidazolone and 5-guanidino-4-nitroimidazole. Neeley WL; Delaney JC; Henderson PT; Essigmann JM J Biol Chem; 2004 Oct; 279(42):43568-73. PubMed ID: 15299010 [TBL] [Abstract][Full Text] [Related]
3. Genetic requirement for mutagenesis of the G[8,5-Me]T cross-link in Escherichia coli: DNA polymerases IV and V compete for error-prone bypass. Raychaudhury P; Basu AK Biochemistry; 2011 Mar; 50(12):2330-8. PubMed ID: 21302943 [TBL] [Abstract][Full Text] [Related]
4. Role of damage-specific DNA polymerases in M13 phage mutagenesis induced by a major lipid peroxidation product trans-4-hydroxy-2-nonenal. Janowska B; Kurpios-Piec D; Prorok P; Szparecki G; Komisarski M; Kowalczyk P; Janion C; Tudek B Mutat Res; 2012 Jan; 729(1-2):41-51. PubMed ID: 22001238 [TBL] [Abstract][Full Text] [Related]
5. DNA polymerases II and V mediate respectively mutagenic (-2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct. Fuchs RP; Koffel-Schwartz N; Pelet S; Janel-Bintz R; Napolitano R; Becherel OJ; Broschard TH; Burnouf DY; Wagner J Biochem Soc Trans; 2001 May; 29(Pt 2):191-5. PubMed ID: 11356152 [TBL] [Abstract][Full Text] [Related]
6. Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family. Minko IG; Yamanaka K; Kozekov ID; Kozekova A; Indiani C; O'Donnell ME; Jiang Q; Goodman MF; Rizzo CJ; Lloyd RS Chem Res Toxicol; 2008 Oct; 21(10):1983-90. PubMed ID: 18788757 [TBL] [Abstract][Full Text] [Related]
7. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Tang M; Pham P; Shen X; Taylor JS; O'Donnell M; Woodgate R; Goodman MF Nature; 2000 Apr; 404(6781):1014-8. PubMed ID: 10801133 [TBL] [Abstract][Full Text] [Related]
8. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. Napolitano R; Janel-Bintz R; Wagner J; Fuchs RP EMBO J; 2000 Nov; 19(22):6259-65. PubMed ID: 11080171 [TBL] [Abstract][Full Text] [Related]
9. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis. Maor-Shoshani A; Reuven NB; Tomer G; Livneh Z Proc Natl Acad Sci U S A; 2000 Jan; 97(2):565-70. PubMed ID: 10639119 [TBL] [Abstract][Full Text] [Related]
10. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Viguera E; Petranovic M; Zahradka D; Germain K; Ehrlich DS; Michel B Mol Microbiol; 2003 Oct; 50(1):193-204. PubMed ID: 14507374 [TBL] [Abstract][Full Text] [Related]
11. A role for DNA polymerase V in G --> T mutations from the major benzo[a]pyrene N2-dG adduct when studied in a 5'-TGT sequence in E. coli. Yin J; Seo KY; Loechler EL DNA Repair (Amst); 2004 Mar; 3(3):323-34. PubMed ID: 15177047 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxic and Mutagenic Properties of C3'-Epimeric Lesions of 2'-Deoxyribonucleosides in Escherichia coli Cells. Wang P; Amato NJ; Wang Y Biochemistry; 2017 Jul; 56(29):3725-3732. PubMed ID: 28650656 [TBL] [Abstract][Full Text] [Related]
13. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Corzett CH; Goodman MF; Finkel SE Genetics; 2013 Jun; 194(2):409-20. PubMed ID: 23589461 [TBL] [Abstract][Full Text] [Related]
14. Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. Gawel D; Pham PT; Fijalkowska IJ; Jonczyk P; Schaaper RM J Bacteriol; 2008 Mar; 190(5):1730-42. PubMed ID: 18156258 [TBL] [Abstract][Full Text] [Related]
15. The Escherichia coli UVM response is accompanied by an SOS-independent error-prone DNA replication activity demonstrable in vitro. Al Mamun AA; Yadava RS; Ren L; Humayun MZ Mol Microbiol; 2000 Oct; 38(2):368-80. PubMed ID: 11069662 [TBL] [Abstract][Full Text] [Related]
16. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Duigou S; Ehrlich SD; Noirot P; Noirot-Gros MF Mol Microbiol; 2004 Oct; 54(2):439-51. PubMed ID: 15469515 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V. McDonald JP; Vaisman A; Kuban W; Goodman MF; Woodgate R PLoS Genet; 2012; 8(11):e1003030. PubMed ID: 23144626 [TBL] [Abstract][Full Text] [Related]
18. Replication bypass of interstrand cross-link intermediates by Escherichia coli DNA polymerase IV. Kumari A; Minko IG; Harbut MB; Finkel SE; Goodman MF; Lloyd RS J Biol Chem; 2008 Oct; 283(41):27433-27437. PubMed ID: 18697749 [TBL] [Abstract][Full Text] [Related]
19. Defining the position of the switches between replicative and bypass DNA polymerases. Fujii S; Fuchs RP EMBO J; 2004 Oct; 23(21):4342-52. PubMed ID: 15470496 [TBL] [Abstract][Full Text] [Related]
20. Altered translesion synthesis in E. coli Pol V mutants selected for increased recombination inhibition. Sommer S; Becherel OJ; Coste G; Bailone A; Fuchs RP DNA Repair (Amst); 2003 Dec; 2(12):1361-9. PubMed ID: 14642565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]