BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 17322961)

  • 61. Optimal selection of sib pairs from random samples for linkage analysis of a QTL using the EDAC test.
    Dolan CV; Boomsma DI
    Behav Genet; 1998 May; 28(3):197-206. PubMed ID: 9670595
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the distribution of temporal variations in allele frequency: consequences for the estimation of effective population size and the detection of loci undergoing selection.
    Goldringer I; Bataillon T
    Genetics; 2004 Sep; 168(1):563-8. PubMed ID: 15454567
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Optimization of a crossing system using mate selection.
    Li Y; van der Werf JH; Kinghorn BP
    Genet Sel Evol; 2006; 38(2):147-65. PubMed ID: 16492372
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel.
    Laurie CC; Chasalow SD; LeDeaux JR; McCarroll R; Bush D; Hauge B; Lai C; Clark D; Rocheford TR; Dudley JW
    Genetics; 2004 Dec; 168(4):2141-55. PubMed ID: 15611182
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Relative efficiency of the genotypic value and combining ability effects on reciprocal recurrent selection.
    Viana JM; Delima RO; Mundim GB; Condé AB; Vilarinho AA
    Theor Appl Genet; 2013 Apr; 126(4):889-99. PubMed ID: 23224382
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Durability of marker-quantitative trait loci haplotypes in structured populations.
    Miller JR; Hawthorne D
    Genetics; 2005 Nov; 171(3):1353-64. PubMed ID: 16210469
    [TBL] [Abstract][Full Text] [Related]  

  • 67. European flint landraces grown in situ reveal adaptive introgression from modern maize.
    Bitocchi E; Bellucci E; Rau D; Albertini E; Rodriguez M; Veronesi F; Attene G; Nanni L
    PLoS One; 2015; 10(4):e0121381. PubMed ID: 25853809
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Detection of marker-QTL associations by studying change in marker frequencies with selection.
    Gallais A; Moreau L; Charcosset A
    Theor Appl Genet; 2007 Feb; 114(4):669-81. PubMed ID: 17165081
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Loci That Control Nonlinear, Interdependent Responses to Combinations of Drought and Nitrogen Limitation.
    Chang MM; Nail DA; Kazic T; Simmons SJ; Stapleton AE
    G3 (Bethesda); 2018 May; 8(5):1481-1496. PubMed ID: 29496777
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The effects of selection on linkage analysis for quantitative traits.
    Mackinnon MJ; Georges MA
    Genetics; 1992 Dec; 132(4):1177-85. PubMed ID: 1459434
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The power to detect quantitative trait loci using resequenced, experimentally evolved populations of diploid, sexual organisms.
    Baldwin-Brown JG; Long AD; Thornton KR
    Mol Biol Evol; 2014 Apr; 31(4):1040-55. PubMed ID: 24441104
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of the effect and profitability of gene-assisted selection in pig breeding system.
    Li YL; Zhang Q; Chen YS
    J Zhejiang Univ Sci B; 2007 Nov; 8(11):822-30. PubMed ID: 17973344
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data.
    Orr HA
    Genetics; 1998 Aug; 149(4):2099-104. PubMed ID: 9691061
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Effects of Quantitative Trait Architecture on Detection Power in Short-Term Artificial Selection Experiments.
    Lou RN; Therkildsen NO; Messer PW
    G3 (Bethesda); 2020 Sep; 10(9):3213-3227. PubMed ID: 32646912
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genetic diversity and selection signatures in a gene bank panel of maize inbred lines from Southeast Europe compared with two West European panels.
    Galić V; Anđelković V; Kravić N; Grčić N; Ledenčan T; Jambrović A; Zdunić Z; Nicolas S; Charcosset A; Šatović Z; Šimić D
    BMC Plant Biol; 2023 Jun; 23(1):315. PubMed ID: 37316827
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A genomic region harboring the
    Yonemaru JI; Miki K; Choi S; Kiyosawa A; Goto K
    Breed Sci; 2018 Dec; 68(5):582-586. PubMed ID: 30697119
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-parent multi-environment QTL analysis: an illustration with the EU-NAM Flint population.
    Garin V; Malosetti M; van Eeuwijk F
    Theor Appl Genet; 2020 Sep; 133(9):2627-2638. PubMed ID: 32518992
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Estimation of quantitative trait locus allele frequency via a modified granddaughter design.
    Weller JI; Weller H; Kliger D; Ron M
    Genetics; 2002 Oct; 162(2):841-9. PubMed ID: 12399394
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Controlling for P-value inflation in allele frequency change in experimental evolution and artificial selection experiments.
    Kemppainen P; Rønning B; Kvalnes T; Hagen IJ; Ringsby TH; Billing AM; Pärn H; Lien S; Husby A; Saether BE; Jensen H
    Mol Ecol Resour; 2017 Jul; 17(4):770-782. PubMed ID: 27813315
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dynamics of molecular markers linked to the resistance loci in a mosquito-Plasmodium system.
    Yan G; Severson DW
    Genetics; 2003 Jun; 164(2):511-9. PubMed ID: 12807772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.